dc.contributor.author
Niemann, Jan-Hendrik
dc.contributor.author
Uram, Samuel
dc.contributor.author
Wolf, Sarah
dc.contributor.author
Djurdjevac Conrad, Nataša
dc.contributor.author
Weiser, Martin
dc.date.accessioned
2024-05-14T12:13:23Z
dc.date.available
2024-05-14T12:13:23Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43537
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43253
dc.description.abstract
Epidemiological modeling has a long history and is often used to forecast the course of infectious diseases or pandemics. These models come in different complexities, ranging from systems of simple ordinary differential equations (ODEs) to complex agent-based models (ABMs). The former allow a fast and straightforward optimization, but are limited in accuracy, detail, and parameterization, while the latter can resolve spreading processes in detail, but are extremely expensive to optimize. Epidemiological modeling can also be used to propose and design non-pharmaceutical interventions such as lockdowns. In general, their optimal design often leads to nonlinear optimization problems. We consider policy optimization in a prototypical situation modeled as both ODE and ABM, review numerical optimization approaches, and propose a heterogeneous multilevel approach based on combining a fine-resolution ABM and a coarse ODE model. Numerical experiments, in particular with respect to convergence speed, are given for illustrative examples.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Agent-based models
en
dc.subject
Multilevel optimization
en
dc.subject
Epidemiological modeling
en
dc.subject
Gradient approximation
en
dc.subject
Optimal control
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Multilevel optimization for policy design with agent-based epidemic models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
102242
dcterms.bibliographicCitation.doi
10.1016/j.jocs.2024.102242
dcterms.bibliographicCitation.journaltitle
Journal of Computational Science
dcterms.bibliographicCitation.volume
77
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.jocs.2024.102242
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1877-7511
refubium.resourceType.provider
WoS-Alert