dc.contributor.author
Bekheet, Maged F.
dc.contributor.author
Schlicker, Lukas
dc.contributor.author
Popescu, Radian
dc.contributor.author
Riedel, Wiebke
dc.contributor.author
Grünbacher, Matthias
dc.contributor.author
Penner, Simon
dc.contributor.author
Gurlo, Aleksander
dc.date.accessioned
2024-05-30T08:00:15Z
dc.date.available
2024-05-30T08:00:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43200
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42916
dc.description.abstract
ZrO2 is a versatile material with diverse applications, including structural ceramics, sensors, and catalysts. The properties of ZrO2 are largely determined by its crystal structure, which is temperature- and atmosphere dependent. Thus, this work focuses on a quantitative analysis of the temperature- and gas atmosphere-dependent phase transformation of tetragonal t-ZrO2 into monoclinic m-ZrO2 during heating–cooling cycles from room temperature to 1273 K. Synchrotron-based in situ X-ray diffraction (XRD) studies in gas atmospheres of different reduction strengths, namely, 5 vol% H2/Ar, He, CO2, and air, revealed a stabilizing effect of inert and reductive environments, directly yielding different temperature onsets in the phase transformation during cooling (i.e., 435, 510, 710, and 793 K for 5 vol% H2/Ar, He, CO2, and air, respectively). Rietveld refinement shows a direct influence of the atmosphere on grain size, unit cell, and weight fraction of both polymorphs in the product composite matrix. The tetragonal-to-monoclinic (t–m) phase transformation is suppressed in the sample heated only up to ∼850 K, independent of the gas atmosphere. The results of ex situ XRD, transmission electron microscopic, electron paramagnetic resonance, and oxygen titration experiments confirmed that the phase transformation is accompanied by a change in the crystallite/particle size and the amount of lattice defects (i.e., oxygen vacancy). Due to the different onset temperatures, a complex interplay between kinetic limitations of phase transformation and grain sintering yields different pathways of the phase transformation and, eventually, very different final crystallite sizes of both t-ZrO2 and m-ZrO2.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
defect chemistry
en
dc.subject
dissolved hydrogen
en
dc.subject
oxide non-stoichiometry
en
dc.subject
temperature-programmed reduction and oxidation
en
dc.subject
X-ray diffraction
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
A quantitative microscopic view on the gas-phase-dependent phase transformation from tetragonal to monoclinic ZrO2
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1111/jace.19749
dcterms.bibliographicCitation.journaltitle
Journal of the American Ceramic Society
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.pagestart
5036
dcterms.bibliographicCitation.pageend
5050
dcterms.bibliographicCitation.volume
107
dcterms.bibliographicCitation.url
https://doi.org/10.1111/jace.19749
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1551-2916
refubium.resourceType.provider
WoS-Alert