dc.contributor.author
Gomez, Aharon
dc.contributor.author
Tinzl, Matthias
dc.contributor.author
Stoffel, Gabriele
dc.contributor.author
Westedt, Hendrik
dc.contributor.author
Grubmüller, Helmut
dc.contributor.author
Erb, Tobias J.
dc.contributor.author
Vöhringer-Martinez, Esteban
dc.contributor.author
Stripp, Sven T.
dc.date.accessioned
2024-04-12T08:07:20Z
dc.date.available
2024-04-12T08:07:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43190
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42906
dc.description.abstract
The conversion of CO2 by enzymes such as carbonic anhydrase or carboxylases plays a crucial role in many biological processes. However, in situ methods following the microscopic details of CO2 conversion at the active site are limited. Here, we used infrared spectroscopy to study the interaction of CO2, water, bicarbonate, and other reactants with β-carbonic anhydrase from Escherichia coli (EcCA) and crotonyl-CoA carboxylase/reductase from Kitasatospora setae (KsCcr), two of the fastest CO2-converting enzymes in nature. Our data reveal that KsCcr possesses a so far unknown metal-independent CA-like activity. Site-directed mutagenesis of conserved active site residues combined with molecular dynamics simulations tracing CO2 distributions in the active site of KsCCr identify an ‘activated’ water molecule forming the hydroxyl anion that attacks CO2 and yields bicarbonate (HCO3−). Computer simulations also explain why substrate binding inhibits the anhydrase activity. Altogether, we demonstrate how in situ infrared spectroscopy combined with molecular dynamics simulations provides a simple yet powerful new approach to investigate the atomistic reaction mechanisms of different enzymes with CO2.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Infrared spectroscopy
en
dc.subject
metal-independent carbonic anhydrase activity
en
dc.subject
crotonyl-CoA carboxylase/reductase
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Infrared spectroscopy reveals metal-independent carbonic anhydrase activity in crotonyl-CoA carboxylase/reductase
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/D3SC04208A
dcterms.bibliographicCitation.journaltitle
Chemical Science
dcterms.bibliographicCitation.number
13
dcterms.bibliographicCitation.pagestart
4960
dcterms.bibliographicCitation.pageend
4968
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D3SC04208A
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-6539
refubium.resourceType.provider
WoS-Alert