Magnetic Resonance Elastography (MRE) is a well-established non-invasive imaging technique used to quantify the mechanical properties of tissues in vivo for the diagnosis of liver fibrosis. However, MRE is limited by its spatial resolution, sensitivity to motion artifacts, and insensitivity to metabolic function. Therefore, three studies of abdominal MRE were conducted to improve the quality of mechanical maps for characterizing liver tumors, to correct for motion artifacts induced by breathing, and to implement MRE on a PET/MRI scanner to correlate mechanical liver properties with metabolic functions in small animals through technical improvements in image acquisition and post-processing. High-resolution stiffness (shear wave speed in m/s), wave penetration (penetration rate in m/s), and fluidity (phase of the complex shear modulus in rad) maps were generated using multifrequency MRE, novel actuators, and tomoelastography post-processing. The first study characterized the stiffness and fluidity of a total of 141 liver tumors in 70 patients. The second study analyzed the motion of abdominal organs and its effect on their stiffness using different acquisition paradigms and image registration in 12 subjects. The third study examined the relationship of liver stiffness and wave penetration to central metabolic liver functions in 19 rabbits. Malignant liver tumors were distinguished from the surrounding liver (stiffness area under the curve [AUC]: 0.88 and fluidity AUC: 0.95) and benign tumors (stiffness AUC: 0.85 and fluidity AUC: 0.86) due to their increased stiffness and fluidity. In the second study, no significant differences in stiffness were observed despite significant differences in examination time, organ motion, and image quality with different image acquisition paradigms. Motion correction by image registration increased image sharpness, so that no significant difference was measurable between MRE in free breathing and breath-hold. Healthy rabbit livers showed heterogeneous liver stiffness, such that division into low and high stiffness (>1.6 m/s) groups resulted in significant differences in central metabolic functions. Stiffness and fluidity measured by multifrequency MRE hold promise as quantitative biomarkers for the diagnosis of malignant liver tumors. Abdominal MRE with free breathing, followed by image registration, is recommended as the best balance between fast examination time and good image quality. Additionally, the applicability of abdominal MRE in small animals in a clinical MRI was demonstrated, and correlations between mechanical liver properties and metabolic functions were found. This study demonstrates improvements in the quality of maps of biophysical parameters for both clinical and preclinical studies, making an important contribution to the clinical translation of multifrequency MRE as a non-invasive imaging modality for abdominal organs and pathologies.
Die Magnetresonanzelastographie (MRE) ist eine nichtinvasive Bildgebungsmethode zur Quantifizierung mechanischer Gewebeeigenschaften in vivo bei der Diagnose von Leberfibrose. Limitationen bestehen aufgrund örtlicher Bildauflösung, Bewegungsempfindlichkeit und Insensitivität zu metabolischen Funktionen. Aufgrund technischer Verbesserung in der Bildaufnahme und der Bildauswertung wurde daher anhand von drei Studien zur abdominellen MRE die Bildqualität mechanischer Karten zur Charakterisierung von Lebertumoren verbessert, atmungsinduzierte Organbewegungen korrigiert und die MRE an klinischen PET/MRT implementiert, um an Kleintieren die mechanischen Lebereigenschaften mit metabolischen Funktionen zu korrelieren. Mittels multifrequenter MRE, neuartiger Aktoren und tomoelastographischer Auswertung wurden hochaufgelöste Karten der Steifigkeit (Scherwellengeschwindigkeit in m/s), Wellenpenetration (Wellenpenetrationsrate in m/s) und Fluidität (Phase des komplexen Schermoduls in rad) generiert. Die erste Studie charakterisierte die Steifigkeit und Fluidität von insgesamt 141 Lebertumoren an 70 Patienten. Eine zweite Studie analysierte die Bewegung und den Einfluss auf die Steifigkeit abdomineller Organe mittels unterschiedlicher Aufnahmeparadigmen und Bildregistrierung in 12 Probanden. In einer dritten Studie wurde der Zusammenhang von Lebersteifigkeit und Wellenpenetration zu zentralen metabolischen Leberfunktionen an 19 Kaninchen untersucht. Maligne Lebertumoren können durch erhöhte Steifigkeit und Fluidität (Steifigkeit AUC: 0.88 und Fluidität AUC: 0.95) gut von gutartigen Tumoren (Steifigkeit AUC: 0.85 und Fluidität AUC: 0.86) unterschieden werden. In der zweiten Studie wurden trotz verschiedener Aufnahmeparadigmen und Unterschiede in Untersuchungsdauer, Organbewegung und Bildqualität keine signifikanten Unterschiede in der Organsteifigkeit festgestellt. Die Bildregistrierung verbesserte die Bildschärfe, sodass kein signifikanter Unterschied zwischen freier Atmung und Atempause messbar war. Kaninchenlebern zeigten heterogene Steifigkeiten, sodass eine Zweiteilung in niedrige und hohe Steifigkeit (>1.6 m/s) signifikante Unterschiede in zentralen metabolischen Funktionen zeigte. Steifigkeit und Fluidität, die mittels der Mehrfrequenz-MRE gemessen werden, stellen vielversprechende quantitative Biomarker für die Diagnose maligner Lebertumoren dar. Abdominelle MRE in freier Atmung mit Bildregistrierung ist der beste Kompromiss aus schneller Untersuchungsdauer und guter Bildqualität. Die Anwendbarkeit an Kleintieren in einem klinischen MRT wurde gezeigt, inklusive Korrelationen zwischen mechanischen Lebereigenschaften und metabolischen Funktionen. Diese Arbeit konnte somit die Bildqualität mechanischer Karten sowohl für klinische als auch präklinische Untersuchungen verbessern und damit einen wichtigen Beitrag zur Translation der Multifrequenz-MRE als klinisch angewandte nichtinvasive Bildgebungsmethode abdomineller Organe und Pathologien leisten.