There is a medical need to develop new and effective therapies against triple-negative breast cancer (TNBC). Chimeric antigen receptor (CAR) natural killer (NK) cells are a promising alternative to CAR-T cell therapy for cancer. A search for a suitable target in TNBC identified CD44v6, an adhesion molecule expressed in lymphomas, leukemias and solid tumors that is implicated in tumorigenesis and metastases. We have developed a next-generation CAR targeting CD44v6 that incorporates IL-15 superagonist and checkpoint inhibitor molecules. We could show that CD44v6 CAR-NK cells demonstrated effective cytotoxicity against TNBC in 3D spheroid models. The IL-15 superagonist was specifically released upon recognition of CD44v6 on TNBC and contributed to the cytotoxic attack. PD1 ligands are upregulated in TNBC and contribute to the immunosuppressive tumor microenvironment (TME). Competitive inhibition of PD1 neutralized inhibition by PD1 ligands expressed on TNBC. In total, CD44v6 CAR-NK cells are resistant to TME immunosuppression and offer a new therapeutic option for the treatment of BC, including TNBC.