Behavioral and experimental economics have conventionally employed text data to facilitate the interpretation of decision-making processes. This paper introduces a novel methodology, leveraging text data for predictive analytics rather than mere explanation. We detail a supervised classification framework that interprets patterns in chat text to estimate the likelihood of associated numerical outcomes. Despite the unique advantages of experimental data in correlating textual and numerical information for predictive modeling, challenges such as limited sample sizes and potential data skewness persist. To address these, we propose a comprehensive methodological framework aimed at optimizing predictive modeling configurations, particularly in small experimental behavioral research datasets. We also present behavioral experimental data from a preregistered tax evasion game (n=324), demonstrating that chat behavior is not influenced by experimenter demand effects. This establishes chat text as an unbiased variable, enhancing its validity for prediction. Our findings further indicate that beliefs about others’ dishonesty, lying attitudes, and risk preferences significantly impact compliance decisions.