dc.contributor.author
Cheng, Hong
dc.contributor.author
Sanchez Medina, Julie
dc.contributor.author
Zhou, Jianqiang
dc.contributor.author
Machado Pinho, Eduardo
dc.contributor.author
Meng, Rui
dc.contributor.author
Wang, Liuwei
dc.contributor.author
He, Qiang
dc.contributor.author
Moran, Xosé Anxelu G.
dc.contributor.author
Hong, Pei-Ying
dc.date.accessioned
2024-03-15T13:55:28Z
dc.date.available
2024-03-15T13:55:28Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42872
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42588
dc.description.abstract
Having a tool to monitor the microbial abundances rapidly and to utilize the data to predict the reactor performance would facilitate the operation of an anaerobic membrane bioreactor (AnMBR). This study aims to achieve the aforementioned scenario by developing a linear regression model that incorporates a time-lagging mode. The model uses low nucleic acid (LNA) cell numbers and the ratio of high nucleic acid (HNA) to LNA cells as an input data set. First, the model was trained using data sets obtained from a 35 L pilot-scale AnMBR. The model was able to predict the chemical oxygen demand (COD) removal efficiency and methane production 3.5 days in advance. Subsequent validation of the model using flow cytometry (FCM)-derived data (at time t – 3.5 days) obtained from another biologically independent reactor did not exhibit any substantial difference between predicted and actual measurements of reactor performance at time t. Further cell sorting, 16S rRNA gene sequencing, and correlation analysis partly attributed this accurate prediction to HNA genera (e.g., Anaerovibrio and unclassified Bacteroidales) and LNA genera (e.g., Achromobacter, Ochrobactrum, and unclassified Anaerolineae). In summary, our findings suggest that HNA and LNA cell routine enumeration, along with the trained model, can derive a fast approach to predict the AnMBR performance.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
anaerobic membrane bioreactor
en
dc.subject
flow cytometry
en
dc.subject
HNA and LNA cells
en
dc.subject
microbial diversity
en
dc.subject
predictive model
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Predicting Anaerobic Membrane Bioreactor Performance Using Flow-Cytometry-Derived High and Low Nucleic Acid Content Cells
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.est.3c07702
dcterms.bibliographicCitation.journaltitle
Environmental Science & Technology
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.pagestart
2360
dcterms.bibliographicCitation.pageend
2372
dcterms.bibliographicCitation.volume
58
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.est.3c07702
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-5851
refubium.resourceType.provider
WoS-Alert