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ABSTRACT: Having a tool to monitor the microbial abundances
rapidly and to utilize the data to predict the reactor performance
would facilitate the operation of an anaerobic membrane bioreactor
(AnMBR). This study aims to achieve the aforementioned scenario
by developing a linear regression model that incorporates a time-
lagging mode. The model uses low nucleic acid (LNA) cell
numbers and the ratio of high nucleic acid (HNA) to LNA cells as
an input data set. First, the model was trained using data sets
obtained from a 35 L pilot-scale AnMBR. The model was able to
predict the chemical oxygen demand (COD) removal efficiency
and methane production 3.5 days in advance. Subsequent
validation of the model using flow cytometry (FCM)-derived
data (at time t − 3.5 days) obtained from another biologically
independent reactor did not exhibit any substantial difference between predicted and actual measurements of reactor performance at
time t. Further cell sorting, 16S rRNA gene sequencing, and correlation analysis partly attributed this accurate prediction to HNA
genera (e.g., Anaerovibrio and unclassified Bacteroidales) and LNA genera (e.g., Achromobacter, Ochrobactrum, and unclassified
Anaerolineae). In summary, our findings suggest that HNA and LNA cell routine enumeration, along with the trained model, can
derive a fast approach to predict the AnMBR performance.
KEYWORDS: anaerobic membrane bioreactor, flow cytometry, HNA and LNA cells, microbial diversity, predictive model

1. INTRODUCTION
An anaerobic membrane bioreactor (AnMBR) is increasingly
being viewed as a promising biotechnology for sustainable
municipal wastewater treatment.1,2 This bioreactor, which
combines membrane-based filtration with anaerobic fermenta-
tion, has several advantages over conventional aerobic
processes that are currently used in most municipal wastewater
treatment plants. For instance, an AnMBR eliminates the need
for aeration and reduces the energy consumption rate from ca.
2 kWh/m3 in an aerobic membrane bioreactor (MBR) to ca.
0.8 kWh/m3.3 In addition, anaerobic fermentation converts
organic carbon in municipal wastewater into methane, an
energy source, while retaining total nitrogen and phosphorus in
the effluent, which can be beneficial when used to irrigate
certain types of crops.4 However, anaerobic fermentation is
highly reliant on symbiosis among fermenters (e.g., Acine-
tobater and Clostridium), syntrophs (e.g., Syntrophomonas), and
methanogens (e.g., Methanosaeta).5,6 Therefore, tools that
monitor the abundance or relative proportions of microbial
populations, which are associated with the reactor perform-
ance, would be beneficial during the startup and routine
operation of this process.

Molecular-based tools, e.g., quantitative polymerase chain
reaction (qPCR), can quantify the gene copies or cell numbers
of bacteria but would require DNA extraction prior to qPCR
(which collectively takes ca. 2−3 h from start until
completion) and knowledge on which microbial targets to
monitor.7 16S rRNA gene-based amplicon sequencing can help
determine the relative abundance of microbial populations
without the need for prior knowledge on microbial targets.
However, this method requires DNA extraction, library
preparation, the deployment of samples on the next-generation
sequencing platform, and the subsequent bioinformatic
analysis of raw data. With all of these required steps, 16S
rRNA gene-based amplicon sequencing can take a long time to
determine the existing microbial populations and their effect
on reactor operation. Considering the existing limitations of
qPCR and amplicon sequencing, flow cytometry (FCM) may
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be a good alternative method to rapidly enumerate microbial
abundance without the need to perform DNA extraction and
can be performed at a low cost of <0.1 USD per sample.8

FCM detects discrete particles suspended in a sheath fluid in
two ways. First, the light signals of the laser beam are scattered
off upon hitting the target particle at different angles,
depending upon the cell size and density. These signals are
detected as forward (FSC) and side (SSC) light scatter,
respectively. Second, fluorescence signals, including autofluor-
escence emitted by the cells (e.g., chlorophyll in algae and
microalgae and coenzyme F420 in methanogens) and/or that
emitted from the nucleic acid stains (e.g., SYBR- and SYTO-
based stains), are detected on the basis of the appropriate
excitation and emission wavelengths of the laser. FCM has
already been used on drinking water or surface water to acquire
information on total cell concentrations.9−11 In addition to
enumerating cell numbers, cells with a high nucleic acid
(HNA) content can be differentiated from those with a low
nucleic acid (LNA) content on a flow cytogram using a nuclear
stain, because the former would emit higher signal fluorescence
as a result of a larger genome size or differences in
phylogenetic composition.12−14

HNA population densities were previously observed to
correlate with perturbations. To exemplify, Zolkefli et al.
tracked changes in the proportion of river HNA to LNA
microbial communities in response to the palm oil mill effluent
discharging and observed that HNA cells may be much more
susceptible to external nutrients than LNA cells.15 Therefore,
by determining the ratio of HNA/LNA and observing the
deviation from the baseline ratio, one can potentially relate
these changes to aberrations in treatment conditions or
environmental stressors that resulted in a spike in either
group of bacteria (i.e., HNA or LNA). On the basis of
observations from earlier studies,14−17 it was hypothesized that
the abundance ratio of HNA and LNA monitored by FCM
could potentially be used as a tool to rapidly predict the
AnMBR reactor performance.

Herein, a pilot-scale AnMBR was initiated at an initial
hydraulic retention time (HRT) of 24 h, which was then
gradually decreased to 12 h. The corresponding organic
loading rate (OLR) therefore increased from 1.15 to 2.67 g L−1

day−1. The correlation between the performance of AnMBR, α
microbial diversity, and changes in HNA and LNA abundances
as determined by FCM were analyzed. A linear regression
model was then fitted using FCM-derived data to correlate
with the reactor performance and further tested for its accuracy
using samples obtained from an AnMBR that was operated in a
biologically independent manner. In addition, selected HNA
and LNA microbiota that were successfully sorted through
FCM were further identified for their phylogenetic identities.
This study aims to demonstrate the feasibility of using FCM-
derived data within a regression model that can predict
AnMBR performance in advance.

2. MATERIALS AND METHODS
2.1. Pilot Reactor Configuration and Operating

Condition. A pilot AnMBR was set up and operated over 5
months since Dec 9, 2021 (Figure 1A). The pilot AnMBR
included two tanks (i.e., a 35 L sludge tank and a 35 L
membrane tank). The sludge tank was filled with plastic bio-
ball carriers (2.5 cm diameter) and operated in up-flow mode,
and the membrane tank had a 0.5 m2 submerged cross-flow flat
sheet polyvinylidene difluoride (PVDF) microfiltration mem-
brane (nominal pore size of 0.4 μm, PHILOS membrane,
Korea). The inoculated anaerobic sludge concentration
included a mixed liquor suspended solid (MLSS) of
approximately 4.18 g/L. The AnMBR was then maintained
at 35 °C and fed with synthetic wastewater, with constituents
listed in Table S1 of the Supporting Information.18 The
synthetic wastewater included a chemical oxygen demand
(COD) of 1247 ± 77 mg/L and was adjusted to pH 7. Herein,
four HRTs were considered. The initial HRT was set at 24 h
for the first 48 days (i.e., phase 1). The HRT was then
decreased to 20 h in the following 29 days (i.e., phase 2) and

Figure 1. Pilot AnMBR and its performance considering the variation in the HRT: (A) different operational phases conducted and sample points
for this study, (B) COD removal efficiency, and (C) methane production.
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then 16 h for an additional 29 days (i.e., phase 3) and last was
reduced to 12 h for the remaining 40 days (i.e., phase 4). The
variations in HRTs resulted in the corresponding OLRs from
1.15 to 2.67 g of COD L−1 day−1. The change in HRTs was
made when the reactor achieved a steady state at the earlier
HRT (i.e., more than 91% COD removal for over 10 days and
with no further increase in COD removal). Throughout the
bioreactor operation, the membrane was not cleaned or
changed; however, the transmembrane pressure was monitored
to maintain below 40 kPa. The sampling points are shown in
Figure 1A. Three 60 mL samples are individually taken from
the bottom, middle, and top sections of the sludge tank (i.e.,
S.p 1, S.p 2, and S.p 3, respectively) twice per week throughout
this study. Thus, the solid retention time (SRT) was
considered as approximately 680 days. At the same time, 60
mL of effluent was sampled after membrane filtration (i.e., S.p
effluent; Figure 1A).
2.2. Biogas and Methane Measurement. Biogas

produced from AnMBR was captured continuously in gas
bags from the headspace of the reactor. The produced biogas
volume was measured using a wet drum chamber gas meter
(Ritter Apparatebau, Germany). The biogas composition (i.e.,
CH4, O2, N2, and H2) was measured using a SRI model 301C
gas chromatograph (SRI Instruments, Torrance, CA, U.S.A.)
with a molecular sieve column using argon as a carrier gas,
followed by a thermal conductivity detector (TCD). CO2 was
measured using another SRI model 301C gas chromatograph
with a silica column using helium as the carrier gas, followed by
a TCD. Each biogas sample was measured considering
technical triplicates.
2.3. Flow Cytometry and Flow Cytogram Analysis.

The samples were analyzed via flow cytometry, as described in

one of the previous studies with slight modifications.19 In
summary, 2 mL of each sample retrieved from the sludge tank
was diluted 10 000-fold with sterile water. All of the diluted
samples were incubated in the dark for 10 min at 37 °C and
then stained using 1× SYBR Green I (Invitrogen Corp.,
Carlsbad, CA, U.S.A.). After staining, 400 μL of the stained
samples with 10 μL of 106 latex beads mL−1 (1.002 μm,
Polysciences Europe) solution was enumerated by a
FACSCanto II instrument equipped with a blue 488 nm
Sapphire 488-20 (20 mW, Coherent). Molecular Probes
fluorescent latex beads were used as an internal standard for
fluorescence measurement and particle sizing. The 488 nm
lasers were used for the analysis of the forward scattering
channel (FSC, 488/10), side scattering channel (SSC, trigger
signal, 488/10), SYBR Green I fluorescence (FITC, 530/30),
and red fluorescence (PerCP-Cy5.5, >670). The samples were
individually analyzed at a high flow rate (i.e., ca. 117.9 μL
min−1) until 10 000 events were performed. Measurements
were conducted in technical triplicates. After evaluation,
FlowJo V10 (FlowJo, Ashland, OR, U.S.A.) was used to
analyze the flow cytogram accordingly.20 First, the events were
viewed on SSC-A versus FSC-A channels, and abnormal events
located on the edge of the plots (i.e., abnormal size or
morphological complexities) were removed (Figure 2A). Then,
the evaluation of the FITC-A versus SSC-A channels allowed
for the visualization of the region associated with bacterial
cells, identified on the basis of the size comparison to latex
beads (Figure 2B). Furthermore, when viewed on the PerCP-
CyTM5.5 versus FITC-A channels, HNA and LNA clusters
can be distinguished as two clusters because of the difference
in the microbial nucleic acid content (Figure 2C). The

Figure 2. Gating strategy to quantify the HNA and LNA populations in sludge samples and the monitoring of their actual abundance: (A) removal
of events on the edges of SSC/FSC, (B) selection of the cell population for HNA/LNA analysis with FITC/SSC, (C) establishing gates between
HNA and LNA subpopulations, and (D) number of HNA and LNA cells and the ratio of HNA/LNA abundance at different HRTs.
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abundance of HNA and LNA cells within each cluster was
enumerated accordingly.
2.4. HNA and LNA Cell Sorting. To identify the HNA

and LNA cells, BD FACS Aria III (BD Bioscience, Franklin
Lakes, NJ, U.S.A.) was further applied to sort and enrich HNA
and LNA cells similar to previous studies.20,21 Samples stained
by 1× SYBR Green I (Invitrogen Corp., Carlsbad, CA, U.S.A.)
were HNA and LNA cells determined on the basis of the
gating strategy described in section 2.3. Sheath fluid was
applied as the negative control at each sorting. A total of 1 ×
107 events were sorted using a 70 μm nozzle for each HNA or
LNA group that was present in each sample, with the HNA
and LNA cells from each sample kept separately in sterile
microcentrifuge tubes and frozen at −80 °C prior to DNA
extraction. Sheath fluid was also collected at the end of every
sorting day as a negative control to detect contaminant DNA.
Data files were analyzed using FlowJo V10 (FlowJo, Ashland,
OR, U.S.A.).
2.5. DNA Extraction, 16S rRNA Gene Amplicon

Sequencing, and Data Processing. The microbial richness,
the diversity of the sampled sludge, and the sorted HNA and
LNA groups were analyzed via high-throughput sequencing in
accordance with the previous report.22 The genomic DNA was
extracted using the PowerSoil DNA Isolation Kit (MoBio
Laboratories, Carlsbad, CA, U.S.A.) with slight modifica-
tions.23 The quality and quantity of extracted DNA were
checked by a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE, U.S.A.). 16S rRNA gene
fragments (V3−V4) of the extracted DNA from each sample
were amplified using primers 515F (5′-Illumina overhang-
GTGYCAGCMGCCGCGGTAA-3′) and 907R (5′-Illumina
overhang- CCCCGYCAATTCMTTTRAGT-3′). The ampli-
cons were of the anticipated size of approximately 550 bp, and
the negative control had no amplification. Polymerase chain
reaction (PCR) amplicons were cleaned using AMPure XP
beads (Beckman Coulter, Brea, CA, U.S.A.). Hereafter, index
PCR was conducted on the PCR amplicons derived from each
sample to attach dual indices provided by the Nextera XT
Index Kit (Illumina, Inc., San Diego, CA, U.S.A.), which
allowed us to bioinformatically differentiate each sample after
sequencing was completed. Indexed PCR amplicons were
cleaned by AMPure XP beads (Beckman Coulter, Brea, CA,
U.S.A.). The indexed PCR amplicons from the samples were
mixed in equimolar concentrations and then submitted to the
King Abdullah University of Science and Technology
(KAUST) Core Lab for Illumina MiSeq sequencing. All
high-throughput sequencing raw data were deposited in the
short read archive of the European Nucleotide Archive under
study accession number PRJEB54690. After sequencing, the
raw amplicon sequences obtained in this study were analyzed
on the QIIME 2 platform (version 2020.2).24 The sequencing
data were first processed using DADA2,25 including quality
filtering, denoising, and chimera removal. Amplicon sequence
variants, which are analogous to operational taxonomic units
(OTUs), were generated by DADA2. Taxonomy was assigned
to OTUs using q2-feature-classifier26 (the classify-sklearn
option) against Silva SSU database release 132.27 To further
illustrate the dynamics of microbial diversity under different
HRTs, the α diversity of sludge (i.e., Chao1, Pielou, and
Shannon indexes) was further evaluated through QIIME 2.
The previous study reported that the Chao 1 index could
indicate the richness of the microbial community, the Pielou
index could provide information about the equity in species

abundance in each sample, and the Shannon index could offer
information about both richness and evenness.28 For sorted
HNA and LNA identification, to minimize errors incurred
during phylogenetic identification because cell sorting cannot
be performed precisely to ensure perfect separation and sorting
of the HNA and LNA cells, we define those genera that were
consistently present and in considerably higher relative
abundance in HNA-sequenced samples as HNA cells. In
contrast, the genera that were consistently present and in
considerably higher relative abundance in LNA-sequenced
samples were the LNA cells. All other genera that did not
match these criteria are not considered herein.
2.6. Correlation Analysis. To visualize the correlations in

a network interface, all possible pairwise Spearman’s rank
correlations between reactor performances (i.e., COD removal
efficiency, methane production, and OLR), α diversity of the
microbial community, and FCM-derived results (i.e., HNA cell
abundance, LNA cell abundance, and HNA/LNA ratio) were
calculated to construct a correlation matrix. Spearman’s rank
correlation coefficient was chosen because it is a non-
parametric measure of association that is suitable for assessing
the strength and direction of the monotonic relationship
between two ranked variables, especially when assumptions of
linearity and homoscedasticity are not met or when data are
ordinal or have outliers. The correlation coefficient and its p
value were calculated using the Himisc package in RStudio.
The matrix was further visualized using corrplot in RStudio.
2.7. Linear Model Fitting without Time Lagging.

Herein, a linear model was constructed to determine a
mathematical relationship between a set of predictor data
(which are FCM-derived data at time t) and responses [either
the COD removal efficiency or methane production measured
at the same time (i.e., t), respectively]. On the basis of the
existing measured values of different variables and their
correlative analysis in section 2.6, five FCM-derived variables
(HNA abundance, LNA abundance, HNA/LNA ratio, log
HNA, and log LNA) were identified to significantly affect the
AnMBR performance (i.e., either COD removal efficiency or
methane production, respectively), with all having p < 0.05,
and thus were selected for the model development. Given that
there is a temporal dependency between the variables, a time-
series cross-validation method was performed herein. This
method splits the data into multiple training and test sets based
on a specific time point. In contrast to traditional cross-
validation methods (e.g., k-fold cross-validation), time-series
cross-validation could fully consider the theoretical problems
with respect to temporal evolutionary effects and dependencies
within the data as well as practical problems regarding missing
values.29 The data were partitioned into two subsets for
training and test, with the condition that the test set is always
ahead of the training set. At the first iteration, the initial
training set comprised 20 samples × 5 variables and the test set
contained 3 samples × 5 variables. Then, the linear model was
fitted and evaluated through the training and test sets. For the
subsequent iteration, the training set was gradually expanded
with 1 step size to include more data points, while the test set
synchronously moved forward but kept a constant number of
data points. Repeated iterations were performed for the linear
model fitting and evaluation until all data are covered in the
model. To further determine model fitting, stepwise model
selection based on the Akaike information criterion was
applied using the MASS package in R.
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To determine the accuracy of the regression model, different
factors, such as the coefficient of determination (R2), root-
mean-square error (RMSE), and mean absolute error (MAE),
were calculated using the tidyverse package in R. The
definitions of R2, RMSE, and MAE are further defined as
follows:

(a) The coefficient of determination (or R2) represents the
proportion of the variance in the dependent variable, which is
explained by the linear regression model.

=R
y y

y y
1

( )

( )
i

i

2 pred
2

means
2

(1)

(b) The RMSE represents the error associated with the
model and can be computed as

=
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( )
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N

i
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pred
2
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(c) The MAE represents the average of the absolute
difference between the actual and predicted values in the data
set. It measures the average of the residuals in the data set

= | |
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y yMAE
1

i

N

i
1

pred
(3)

where ypred and ymeans represent the model computed and
measured values of the variable and N represents the number
of observations.
2.8. Linear Model Fitting with Time Lagging.

Considering that the reactor performance is highly reliant on
functional microbiota,5,6 there may be a temporal lag between
microbial community variation and reactor performance
response. Therefore, we attempted to develop the linear
model by time lagging the reactor performance data (time t)
with the FCM-derived data from samples obtained beforehand
at lags 1 (3.5 days before time t, i.e., t − 3.5), 2 (7 days before
time t, i.e., t − 7), and 3 (10.5 days before time t, i.e., t − 10.5)
intervals in comparison to that without any time lag (i.e., lag
0). These data were refitted and evaluated on the basis of the
procedures mentioned in section 2.7. After comparison of R2,
RSME, and MAE values, the best fitted model was proposed.
2.9. Model Verification. To verify the applicability of the

proposed linear regression model, a separate 35 L AnMBR that
was continuously operated to treat real municipal wastewater
since Dec 21, 2020 was sampled on a routine basis to provide
biologically independent data sets. The reactor was monitored
in two separate stages: from Jan 12, 2021 to Nov 7, 2021 (i.e.,
stage 1) and from March 26, 2023 to May 15, 2023 (i.e., stage
2). Similar to section 2.1, four HRTs were applied during this
new operational phase. The other operational parameters were
kept consistent. The two stages maintained the same SRTs
(i.e., 680 days). The suspension MLSS was evaluated. A total
of 20 sludge samples in stage 1 and 18 sludge samples in stage
2 were assessed via FCM, as described in section 2.3. The
FCM data sets, which were collected 3.5 days in advance of
time t (i.e., lag time of t = 3.5 days) were input into the linear
regression models to predict COD removal efficiency or
methane production at time t. The coefficient of determination
(R2), RMSE, and MAE were collated to determine the
accuracy of the model. The higher the value of R2 but with
lower RSME and MAE values, the more accurate the model
would be. However, for the methane production, we failed to

gather precise methane production in stage 1 to accurately
verify the model as a result of gas leakage.
2.10. Contribution of Identified HNA and LNA Genera

to the Reactor Performance. To evaluate the contribution
of the identified HNA and LNA genera to the reactor
performance, the relative and absolute abundance of these
HNA and LNA genera were first correlated with the reactor
performance (i.e., COD removal efficiency and methane
production) through the Himisc package in RStudio. The
absolute abundance was calculated on the basis of multiplying
the FCM total cell count results with the relative abundance
obtained from the 16S rRNA gene-based amplicon sequencing
result.30 In addition, the relative and absolute abundance of
these HNA and LNA genera were, respectively, correlated to
the reactor performance (i.e., COD removal efficiency and
methane production) using the random forest model, a R
package, with 70% of the samples randomly selected for the
training set and the others used as the test set. From these full
models, the individual genus was ranked by its importance in
contributing to the accuracy of the COD removal efficiency
and methane production prediction, respectively. This process
is performed by permuting the relative abundance levels for a
genus and calculating the increase in the mean-squared error
(i.e., %incMSE) of the model. The %incMSE refers to the
increase in the mean-squared error of predictions as a result of
the variable (in this case, the relative abundance of particular
genera) being permuted (with values randomly shuffled). A
lower %incMSE indicates that the random permuted form of
that variable worked better in the model, which then indicates
that the said variable is not as important as others. Hence, the
higher the value of %incMSE, the more important that variable
would be.
2.11. Statistical Analysis. All significance testing was

analyzed by either a two-tailed t test or one-way analysis of
variance (ANOVA), available in Microsoft Excel. The null
hypothesis was rejected at a confidence level of 95% (i.e., p
value of ≤0.05).

3. RESULTS
3.1. Reactor Performance. With the decrease in HRT

and, hence, increase in the level of the OLR, the efficiency of
COD removal by the AnMBR increased accordingly (Figure
1B). The average COD removal efficiency was 83.6% at a HRT
of 24 h and gradually increased to 87.8% at a HRT of 20 h. In
contrast, the average COD removal efficiency was more than
93% at HRTs of 16 and 12 h (i.e., 93.2% and 95.9%,
respectively). Further standard deviation analysis indicated
that, at a HRT of 12 h, the variation in COD removal
efficiency was the lowest (i.e., 0.0091; Figure S1A of the
Supporting Information). In addition, the contribution of
membrane filtration to COD removal was calculated on the
basis of the COD difference between the suspension in the
anaerobic digestor and final effluent (post-filtration). Mem-
brane filtration contributed to less than 10% of the total COD
removal (Figure S2 of the Supporting Information), and hence,
the majority of the COD removal in this system is through
anaerobic fermentation. In addition to COD removal, other
water quality parameters (i.e., ammonium, nitrite, nitrate, and
phosphate) were monitored (Figure S3 of the Supporting
Information), and there was no considerable difference in
ammonium and phosphate concentrations at different HRTs
(ANOVA, with p > 0.05).
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Moreover, this study evaluated the biogas content and
methane production at different HRTs. The biogas content
result exhibited lower percentages of CH4 and CO2 at a HRT
of 24 h; however, the content gradually increased to more than
70% in CH4 and 10% in CO2 as HRT decreased (Figure S4 of
the Supporting Information). In accordance with COD
removal efficiency, the average assessed CH4 production
accounted for 62.4% of the theoretical methane production
in the initial stage (i.e., HRT of 24 h) and then increased to
69.9% at a HRT of 20 h, 86.9% at a HRT of 16 h, and finally
92.7% at a HRT of 12 h, respectively (Figure 1C). The
variation in CH4 volume production was the lowest at a HRT
of 12 h compared to those at other HRTs (Figure S1B of the
Supporting Information).
3.2. Variation of the FCM Fingerprint in HNA and

LNA Cells. The abundance of HNA and LNA cells (in terms

of log10 scale) was 7.8 and 7.0 at a HRT of 24 h and gradually
increased to 7.9 and 7.1 at a HRT of 16 h, respectively. In
comparison to the initial stage (i.e., HRT of 24 h), the
logarithm of HNA and LNA cell abundance during the HRT
period of 12 h considerably increased by 7.0% and 10.0% (t
test, with p = 0.05 and 0.02, respectively). The gating regions
of HNA and LNA in the flow cytogram are defined and
exemplified in panels A−C of Figure 2. Although HNA and
LNA log abundance increased with a decrease in HRT, a
decrease in the HNA/LNA ratio was observed (Figure 2D).
For example, the average HNA/LNA ratio was maintained at
6.8 and 7.1 for the first two examined HRTs (i.e., 24 and 20
h); however, the average ratio declined to 5.9 at a HRT of 16 h
and then further declined to 2.9 at a HRT of 12 h (Figure 2D).
This average HNA/LNA ratio at a HRT of 12 h was

Figure 3. Microbial diversity of the anaerobic microbial consortium derived from 16S rRNA gene-based amplicon sequencing: (A) microbial
richness represented on the basis of the Chao 1 index at different HRTs and (B) associated standard deviation in Chao 1 index values of each
examined HRT.

Figure 4. Spearman correlation matrix of the relationships among microbial diversity, FCM-derived fingerprint data, and reactor performance. The
colors and sizes of the dot indicate the correlation coefficient. The darkest blue color indicates a perfect positive correlation (r = 1); the darkest red
indicates a perfect negative correlation (r = −1); and colors of different gradients indicate a gradual loss in correlation from both spectrum ends.
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significantly lower than the ratios noted at the other three
HRTs (ANOVA, with p < 0.01).
3.3. Dynamics in Microbial Diversity. The α diversity of

the total microbial community at each HRT period was
calculated on the basis of the 16S rRNA gene-based amplicon
sequencing results. The Chao 1 index ranged from 355 to 1044
among the samples collected at different time points of HRTs
of 24, 20, and 16 h (Figure 3A). The standard deviations at
HRTs of 24, 20, and 16 h (which considerably varied) were
147.4, 118.3, and 202.3, respectively (Figure 3B). In contrast,
the Chao 1 index had an average value of 393 and exhibited a
relatively lower variation across the different samples collected
at a HRT of 12 h (Figure 3A). The standard deviations at
HRTs of 24, 20, and 16 h were 1.8, 1.4, and 2.5 times that
determined at 12 h. A similar result for the Pielou and
Shannon indexes was obtained as well (Figure S5 of the
Supporting Information).
3.4. Correlation among Microbial Diversity, Reactor

Performance, and FCM-Derived Data. The HNA and LNA
abundances (log scale) were negatively correlated with
microbial diversity (i.e., Chao 1, Pielou, and Shannon indices).
In addition, HNA and LNA abundances were positively
correlated with the AnMBR performance (i.e., COD removal
efficiency and CH4 production). In contrast, the HNA/LNA
ratio exhibited a significant negative correlation with reactor
performance (p < 0.05; Figure 4).
3.5. Fitting of the Linear Regression Model. The

results obtained via the correlation analysis described in
section 3.4 indicated that the reactor performance was
substantially correlated with the FCM-derived data. Thus,
this study further used the linear regression model to explore
the relationship between FCM-derived data and reactor
performance (i.e., COD removal efficiency and CH4
production, respectively). COD removal efficiency and CH4
production were chosen as the representative reactor perform-
ance, whereas FCM-derived parameters were chosen as the

variables. Before deciding on the linear regression model for
further development, this study conducted three other kinds of
regressions (i.e., ridge regression, lasso regression, and partial
least squares regression), and the linear model exhibited best
fitting over others (Figure S6 of the Supporting Information).
Thus, only the linear model was validated and is discussed
hereafter. Next, as a result of the potential time-lagging effect
between microbial community variation and reactor perform-
ance response, this study lagged the reactor performance data
with three iterations of the sample period. As indicated in
Figure S7 of the Supporting Information, lag 1 iteration (i.e.,
lag 3.5 days) exhibited the best fitting, with a maximal R2 value
(i.e., 0.57 and 0.45 in COD removal efficiency and CH4
production, respectively) but with minimal RSME and MAE
values (Figure S7 of the Supporting Information).

Hence, two linear models (with lag 1) were proposed after
fitting (i.e., COD removal efficiency and CH4 production,
respectively).

For COD removal efficiency, after stepwise analysis and
optimization, two parameters remained as variables of
significance, and the linear model can be expressed as

= + × + ×a b b

COD removal efficiency

1 log LNA 2 HNA/LNA ratio
t

t t3.5 3.5
(4)

where COD removal efficiency denotes the dependent
variable, a denotes the intercept, and b1 and b2 denote the
polynomial coefficients.

Further calculation was performed to determine the best fit
and constant factors. This resulted in the equation as follows:

= + ×

×

COD removal efficiency

0.49 0.067 log LNA 0.0038

HNA/LNA ratio

t

t

t

3.5

3.5 (5)

Figure 5. Comparison of the predicted and measured (A) COD removal efficiency and (B) methane production based on the corresponding
proposed linear regression models with two separated stages.
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For this model, a R2 value of 0.57 was obtained, indicating that
approximately 57% of the dependent variable (i.e., y) could be
explained by x.31 The RMSE and MAE values were 0.0040 and
0.0038, respectively.

Similarly, for methane production, after stepwise analysis
and optimization, only two parameters remained as variables of
significance, and the linear model can be expressed as

= + × +

×

a b bCH production 1 log LNA 2

HNA/LNA ratio
t t

t

4 3.5

3.5 (6)

where CH4 production denotes the dependent variable, a
denotes the intercept, and b1 and b2 denote the polynomial
coefficients.

Further calculations were performed to determine the best
fit and constant factors. This resulted in the equation as
follows:

= + ×

×

CH production 0.0067 0.042 log LNA

0.0050 HNA/LNA ratio
t t

t

4 3.5

3.5
(7)

For this model, a R2 value of 0.45 was obtained. The RMSE
and MAE values were 0.0071 and 0.0069, respectively.
3.6. Verification of the Lag 1 Fitted Linear Model. To

further verify that the proposed linear regression model could
predict one of the two reactor performance indicators, FCM-
derived data (at time t − 3.5) obtained from another
independently operated pilot-scale AnMBR fed with real
municipal wastewater at two operational stages were input
into the model to predict the COD removal efficiency (t) in a
scale of 0−100%. As depicted in Figure S8 of the Supporting
Information, the MLSS content in the AnMBR operated in
stage 1 ranged from 320 to 950 mg/L. In contrast, the MLSS
content in the AnMBR operated in stage 2 was higher than
that at stage 1 and ranged from 1800 to 3770 mg/L (Figure
S8A of the Supporting Information). In addition, the water
quality (i.e., ammonium, nitrite, nitrate, and phosphate) of
permeate remained stable during sampling (Figure S8B of the
Supporting Information). Despite differences in the MLSS
content, as shown in Figure 5A, the predicted values
approximated the tested values of the COD removal efficiency
for both stages. Further calculation indicated that the predicted
values (i.e., 89.1 ± 3.3%) in stage 1 were not significantly
different from the observed measurements (i.e., 87.9 ± 2.5%;
ANOVA, with p = 0.23). Furthermore, the R2, RMSE, and
MAE values were 0.72, 0.048, and 0.041, respectively,
indicating that the model could well predict the COD removal
efficiency in this case (Figure 5A and Figure S8C of the
Supporting Information). A similar observation could be
obtained in stage 2.

However, for methane production, we failed to gather
precise methane production to accurately verify the model as a
result of potential gas leakage in stage 1. The observed
methane production was 0.073 ± 0.024 L/g of CODremoved,
which is much lower than the predicted methane production
based on the proposed model (i.e., 0.23 ± 0.023 L/g of
CODremoved; Figure 5B). Correspondingly, the R2, RMSE, and
MAE values were 0.20, 0.17, and 0.16, respectively. In contrast,
at stage 2, the predicted values (i.e., 0.16 ± 0.011 L/g of
CODremoved) exhibited no significant difference with the
observed measurements (i.e., 0.15 ± 0.052 L/g of CODremoved;

ANOVA, with p = 0.56), indicating that the model could well
predict the methane production in this case (Figure 5B).
3.7. Contribution of HNA and LNA to the Reactor

Performance. Considering the correlation between HNA and
LNA abundance with the AnMBR performance, this study
sorted the HNA and LNA cells via FCM and sequenced the
sorted cells to determine their identities. Multivariate analysis
revealed that HNA and LNA microbiota were considerably
different after cell sorting (Figure S9 of the Supporting
Information). Further comparison indicated that there were 34
genera identified in this study, including 25 HNA and 9 LNA
cells, and no syntrophs or methanogens were identified (Table
1). As summarized in Table 1, all of the LNA cells (in both
absolute and relative abundance) except Pseudomonas and
Stenotrophomonas positively correlated with COD removal
efficiency and methane production. For instance, unclassified
Anaerolineae and Ochrobactrum were strongly and positively
correlated with COD removal efficiency and methane
production (R > 0.5; p < 0.01) and with %incMSE value of
>0. In contrast to LNA, 80% of HNA cells (i.e., 20 HNA cells/
25 HNA cells) were negatively correlated with the COD
removal efficiency (Table 1). This is with the exception of
Anaerovibrio and unclassified Bacteroidales, which were
significantly correlated with COD removal efficiency and
methane production (all p < 0.05). Consistently, random forest
analysis indicated that, among HNA, Anaerovibrio and
unclassified Bacteroidales contributed to the COD removal
efficiency and methane production (Table 1).

4. DISCUSSION
A healthy and functioning microbiome, particularly one that
plays a keystone role in hydrolysis, fermentation, and
methanogenesis, is considered crucial to the overall perform-
ance of AnMBRs in removing COD and generating methane as
an energy source.32,33 Flow cytometry can rapidly profile the
dynamics of microbial communities in relation to different
operational parameters or disturbances. To exemplify this,
Dhoble et al. utilized FCM to detect autofluorescence emitted
by microbial cells in two anaerobic digesters (ADs), each
operated with different HRTs. On the basis of clustering
analysis, Dhoble et al. differentiated microbial profiles in both
reactors.34 Similarly, De Vrieze et al. compared 16S rRNA
gene-based amplicon sequencing, metaproteomics, metabolo-
mics, and flow cytomics and obtained a similar clustering
pattern of the microbiomes using the four approaches.35 This
indicates that FCM can be used for faster process monitoring
than other approaches (i.e., 16S rRNA gene-based amplicon
sequencing, metaproteomics, and metabolomics) without
compromising the accuracy specifically, because the latter
approaches would require various forms of sample processing
(e.g., extraction, library preparation, sequencing, and bio-
informatics), which are more time-consuming than that
required by FCM.

Despite showing the overall feasibility of FCM as a
monitoring tool for AD, the previous study did not attempt
to correlate the FCM-derived data with the functional
performance of the reactors and did not use these data to
predict the reactor performance in advance. To address this
knowledge gap, this study focused on differentiating and
enumerating two groups, the HNA and LNA cells, as the HRT
of the AnMBR varied. As the HRT decreased and the reactor
trended toward better stability in terms of COD removal and
methane production, the abundance of HNA and LNA
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increased; however, the ratio of HNA/LNA cells decreased
(Figures 1 and 2). Furthermore, the abundance of HNA and
LNA negatively correlated with α diversity (Figure 4),
indicating the enrichment of selected keystone groups,
particularly that of the LNA groups, which would contribute
more toward the performance of the AnMBR. These
observations agreed with an earlier metadata analysis, which
indicated that the presence of 20 core microbial genera
examined from 13 different AnMBRs potentially accounted for
the COD removal in AnMBRs.6

The LNA group was increasing at a higher rate than the
HNA population when the AnMBR trended toward better
performance, suggesting that the LNA group may play a more
important role than the HNA group in COD removal within
the AnMBR. In aquatic systems, the densities of the HNA
group were observed to correlate positively with heterotrophic
productivity (i.e., incorporation of C into biomass over
time);14,16,17 hence, it appeared counterintuitive that the
LNA in the AnMBR was contributing more toward COD
removal instead of the HNA. However, most of our prior
knowledge regarding the impact of the HNA and LNA groups
in response to a treatment factor or stressor was relatively well-
characterized for the aquatic systems13,21,36 but less so for
AnMBR systems. It may be possible that the current known
roles and phylogenetic identities associated with the LNA
group in aquatic systems are not the same as those for the
anaerobic fermentation process.

We further sorted HNA and LNA cells to sequence for their
phylogenetic identities (Figure S9 of the Supporting
Information and Table 1). The result indicated that 25 and
9 genera were assigned to HNA and LNA, respectively.
Specifically, there were two HNA genera (i.e., Anaerovibrio and
unclassified Bacteroidales) and four LNA genera (i.e.,
Achromobacter, Ochrobactrum, unclassified Anaerolineae, and
Alcaligenes), which were consistently positively correlated with
COD removal efficiency and methane production (Table 1).
Anaerovibrio consists of species that are lipid hydrolytic
bacteria (e.g., glycerides) and/or fermenters of glycerol.37

Moreover, Achromobacter was reported to produce the cell wall
hydrolytic enzyme,38 and certain species of Ochrobactrum are
biodelignified bacteria that degrade lignin to release trapped
cellulose and hemicellulose.39 For unclassified Anaerolineae,
Cai et al. found that some unknown genera of Anaerolineae
possessed the metabolic capacity of carbohydrate hydrolysis
and proteolysis.40 Although Alcaligenes exhibited a weak
correlation with COD removal efficiency and methane
production, the random forest model analysis indicated that
Alcaligenes in absolute cell number contributed to the COD
removal efficiency and methane production (i.e., %incMSE =
1.02 and 1.94, respectively; Table 1). It is assumed that
hydrolysis is the rate-limiting step of anaerobic digestion,41

which may explain the reason for higher COD removal
efficiency and methane production with an increase in the
abundance of hydrolytic LNA populations along with an
increase in the HNA fermenter populations (Figures 1 and 2).
Moreover, this study observed that the genus Prevotella
positively correlated with only the COD removal efficiency
but not methane production (Table 1). Prevotella is a
lignocellulolytic bacteria, which can digest lignocellulosic
biomass into volatile fatty acids (VFAs) through producing
cellulolytic enzymes;42 however, it would reduce the amount of
hydrogen available for methanogenesis, mitigating methane
production.43

Given the importance of HNA and LNA populations in the
AnMBR performance, this study subsequently conducted a
linear regression model fitting to predict the AnMBR
performance (i.e., COD removal efficiency and methane
production, respectively) using 72 sets of FCM-derived data.
An earlier study used 21−185 sets of data, which comprised
pH, temperature, influent COD, and flux, to train a deep
learning model that aimed to predict the reactor perform-
ance.44 However, the previous study did not demonstrate that
the model could predict the reactor performance in advance.
Herein, we used FCM-derived data as an input data set for the
predictive model. Considering that there is most likely a time
lag between any changes in the microbial community and the
corresponding reactor performance, this allows us to develop a
model that incorporates the time component. Specifically, we
found that our proposed model could predict the reactor
performance 3.5 days in advance (Figure S7 of the Supporting
Information). However, owing to the limitation of sampling
frequency (i.e., twice per week), the prediction time may not
be exactly 3.5 days and would need to be further verified. In
addition, although the proposed model predicted the COD
removal efficiency of AnMBR, the model only used FCM-
derived data that were obtained when AnMBR was operating
in a stable steady state. It is uncertain if the model can predict
the reactor performance in advance when sudden aberrations
occur, which can drastically change the HNA and LNA ratio.
Further study would be needed to validate the accuracy of this
model in predicting such fluctuating conditions. Lastly,
considering different treatment efficacies and, hence, microbial
communities that might arise in pilot- and full-scale AnMBR
reactors, further studies would be needed to verify the
applicability of our predictive model on larger or even full-
scale AnMBR systems.

Jeong et al. proposed deep learning models using 16
operating parameters (e.g., SRT, temperature, suspended solid
concentration, etc.) to predict biogas production in the
anaerobic co-digestion of organic wastes, and the previous
study predicted a coefficient of determination (R2) of 0.68.45

The lower R2 value obtained in this study (i.e., 0.45) might be
partly due to the limited data set. In addition, different input
data and missing FCM-derived data related to syntrophs and
methanogens could also result in a low R2 value. The previous
study indicated that methanogens and syntrophs considerably
contribute to COD removal and methane production.46

However, herein, no methanogens or syntrophs were identified
as HNA or LNA cells (Table 1). Because methanogens and
syntrophs are present in low abundance in an AD system,47

FCM may not have the needed detection sensitivity to detect
these low-abundant populations if the samples were stained
with a non-specific fluorescence reporter like that of SYBR
Green or 4′,6-diamidino-2-phenylindole (DAPI). Instead,
because methanogens emit autofluorescence as a result of
cofactor F420, which is an essential hydride carrier in
hydrogenotrophic methane synthesis,48−50 Lambrecht et al.
demonstrated the use of autofluorescence-based FCM to
enumerate methanogenic archaea. The methanogens were
denoted to be present in a range from 3.7 × 108 to 1.8 × 109

cells/mL in methanogenic enrichment cultures and digester
samples,51 suggesting the feasibility to use FCM to detect them
based on autofluorescence. Such approaches may not be
applicable for low-abundant syntrophs, because they are not
known to emit autofluorescence. Further studies would have to
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be conducted to enumerate the autofluorescence portions via
FCM and evaluate their correlation to CH4 production.

This study demonstrated the use of FCM to monitor HNA
and LNA populations, which were positively correlated with
the AnMBR performance (i.e., COD removal efficiency and
methane production). Cell sorting, 16S rRNA gene-based
amplicon sequencing, and correlation analysis further deter-
mined HNA genera (i.e., Anaerovibrio and unclassified
Bacteroidales) and LNA genera (i.e., Achromobacter, Ochrobac-
trum, and unclassified Anaerolineae) to substantially contribute
to COD removal and methane production. The use of LNA
log abundance and the ratio of HNA/LNA abundance in a
linear regression model enabled the prediction of COD
removal efficiency and methane production approximately
3.5 days in advance. Overall, this study demonstrated the
feasibility of using FCM-derived data to monitor and predict
the AnMBR performance.
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