dc.contributor.author
Lolicato, Fabio
dc.contributor.author
Steringer, Julia P.
dc.contributor.author
Saleppico, Roberto
dc.contributor.author
Beyer, Daniel
dc.contributor.author
Fernandez-Sobaberas, Jaime
dc.contributor.author
Unger, Sebastian
dc.contributor.author
Klein, Steffen
dc.contributor.author
Riegerová, Petra
dc.contributor.author
Schmitt, Xiao J.
dc.contributor.author
Freund, Christian
dc.date.accessioned
2024-03-15T13:40:08Z
dc.date.available
2024-03-15T13:40:08Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42870
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42586
dc.description.abstract
Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.
en
dc.format.extent
42 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Unconventional protein secretion
en
dc.subject
Protein trafficking
en
dc.subject
Protein-lipid interaction
en
dc.subject
Protein-protein interaction
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
RP88579
dcterms.bibliographicCitation.doi
10.7554/eLife.88579.3
dcterms.bibliographicCitation.journaltitle
eLife
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.7554/eLife.88579.3
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2050-084X
refubium.resourceType.provider
WoS-Alert