dc.contributor.author
Werkovits, Anna
dc.contributor.author
Hollweger, Simon B.
dc.contributor.author
Niederreiter, Max
dc.contributor.author
Risse, Thomas
dc.contributor.author
Cartus, Johannes J.
dc.contributor.author
Sterrer, Martin
dc.contributor.author
Matera, Sebastian
dc.contributor.author
Hofmann, Oliver T.
dc.date.accessioned
2024-03-15T11:49:37Z
dc.date.available
2024-03-15T11:49:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42856
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42572
dc.description.abstract
Despite the common expectation that conjugated organic molecules on metals adsorb in a flat-lying layer, several recent studies have found coverage-dependent transitions to upright-standing phases, which exhibit notably different physical properties. In this work, we argue that from an energetic perspective, thermodynamically stable upright-standing phases may be more common than hitherto thought. However, for kinetic reasons, this phase may often not be observed experimentally. Using first-principles kinetic Monte Carlo simulations, we find that the structure with lower molecular density is (almost) always formed first, reminiscent of Ostwald’s rule of stages. The phase transitions to the upright-standing phase are likely to be kinetically hindered under the conditions typically used in surface science. The simulation results are experimentally confirmed for the adsorption of tetracyanoethylene on Cu(111) using infrared and X-ray photoemission spectroscopy. Investigating both the role of the growth conditions and the energetics of the interface, we find that the time for the phase transition is determined mostly by the deposition rate and, thus, is mostly independent of the nature of the molecule.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Phase transitions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Kinetic Trapping of Charge-Transfer Molecules at Metal Interfaces
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.jpcc.3c08262
dcterms.bibliographicCitation.journaltitle
The Journal of Physical Chemistry C
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.pagestart
3082
dcterms.bibliographicCitation.pageend
3089
dcterms.bibliographicCitation.volume
128
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.jpcc.3c08262
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1932-7455
refubium.resourceType.provider
WoS-Alert