Nickel complexes with a two-electron reduced CO2 ligand (CO22−, “carbonite”) are investigated with regard to the influence alkali metal (AM) ions have as Lewis acids on the activation of the CO2 entity. For this purpose complexes with NiII(CO2)AM (AM=Li, Na, K) moieties were accessed via deprotonation of nickel-formate compounds with (AM)N(iPr)2. It was found that not only the nature of the AM ions in vicinity to CO2 affect the activation, but also the number and the ligation of a given AM. To this end the effects of added (AM)N(R)2, THF, open and closed polyethers as well as cryptands were systematically studied. In 14 cases the products were characterized by X-ray diffraction and correlations with the situation in solution were made. The more the AM ions get detached from the carbonite ligand, the lower is the degree of aggregation. At the same time the extent of CO2 activation is decreased as indicated by the structural and spectroscopic analysis and reactivity studies. Accompanying DFT studies showed that the coordinating AM Lewis acidic fragment withdraws only a small amount of charge from the carbonite moiety, but it also affects the internal charge equilibration between the LtBuNi and carbonite moieties.