dc.contributor.author
Schreiber, Franz J.
dc.contributor.author
Eisert, Jens
dc.contributor.author
Meyer, Johannes Jakob
dc.date.accessioned
2024-03-27T13:19:31Z
dc.date.available
2024-03-27T13:19:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42708
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42428
dc.description.abstract
The advent of noisy intermediate-scale quantum computers has put the search for possible applications to the forefront of quantum information science. One area where hopes for an advantage through near-term quantum computers are high is quantum machine learning, where variational quantum learning models based on parametrized quantum circuits are discussed. In this work, we introduce the concept of a classical surrogate, a classical model which can be efficiently obtained from a trained quantum learning model and reproduces its input-output relations. As inference can be performed classically, the existence of a classical surrogate greatly enhances the applicability of a quantum learning strategy. However, the classical surrogate also challenges possible advantages of quantum schemes. As it is possible to directly optimize the Ansatz of the classical surrogate, they create a natural benchmark the quantum model has to outperform. We show that large classes of well-analyzed reuploading models have a classical surrogate. We conducted numerical experiments and found that these quantum models show no advantage in performance or trainability in the problems we analyze. This leaves only generalization capability as a possible point of quantum advantage and emphasizes the dire need for a better understanding of inductive biases of quantum learning models.
en
dc.format.extent
12 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Machine learning
en
dc.subject
Quantum circuits
en
dc.subject
Quantum software
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Classical Surrogates for Quantum Learning Models
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97422
dcterms.bibliographicCitation.articlenumber
100803
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.131.100803
dcterms.bibliographicCitation.journaltitle
Physical Review Letters
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD
dcterms.bibliographicCitation.volume
131 (2023)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevLett.131.100803
dcterms.rightsHolder.url
https://journals.aps.org/authors/editorial-policies-open-access
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007
dcterms.isPartOf.eissn
1079-7114