dc.contributor.author
Caro, Matthias C.
dc.date.accessioned
2025-11-27T08:14:02Z
dc.date.available
2025-11-27T08:14:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42705
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42425
dc.description.abstract
Machine learning researchers and practitioners steadily enlarge the multitude of successful learning models. They achieve this through in-depth theoretical analyses and experiential heuristics. However, there is no known general-purpose procedure for rigorously evaluating whether newly proposed models indeed successfully learn from data. We show that such a procedure cannot exist. For PAC binary classification, uniform and universal online learning, and exact learning through teacher-learner interactions, learnability is in general undecidable, both in the sense of independence of the axioms in a formal system and in the sense of uncomputability. Our proofs proceed via computable constructions that encode the consistency problem for formal systems and the halting problem for Turing machines into whether certain function classes are trivial/finite or highly complex, which we then relate to whether these classes are learnable via established characterizations of learnability through complexity measures. Our work shows that undecidability appears in the theoretical foundations of artificial intelligence: There is no one-size-fits-all algorithm for deciding whether a machine learning model can be successful. We cannot in general automatize the process of assessing new learning models.
en
dc.format.extent
34 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Undecidability
en
dc.subject
Incomputability
en
dc.subject
PAC learning & VC-dimension
en
dc.subject
Online learning & Littlestone dimension
en
dc.subject
Teaching dimension
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
From undecidability of non-triviality and finiteness to undecidability of learnability
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97426
dcterms.bibliographicCitation.articlenumber
109057
dcterms.bibliographicCitation.doi
10.1016/j.ijar.2023.109057
dcterms.bibliographicCitation.journaltitle
International Journal of Approximate Reasoning
dcterms.bibliographicCitation.originalpublishername
Elsevier
dcterms.bibliographicCitation.originalpublisherplace
New York, NY, Amsterdam [u.a.]
dcterms.bibliographicCitation.volume
163 (2023)
dcterms.bibliographicCitation.url
https://linkinghub.elsevier.com/retrieve/pii/S0888613X23001883
dcterms.rightsHolder.url
https://www.sciencedirect.com/journal/international-journal-of-approximate-reasoning/publish/open-access-options
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0888613X