dc.contributor.author
Koczor, Bálint
dc.contributor.author
vom Ende, Frederik
dc.contributor.author
Gosson, Maurice de
dc.contributor.author
Glaser, Steffen J.
dc.contributor.author
Zeier, Robert
dc.date.accessioned
2024-03-25T09:07:10Z
dc.date.available
2024-03-25T09:07:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42677
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42401
dc.description.abstract
Phase spaces as given by the Wigner distribution function provide a natural description of infinite-dimensional quantum systems. They are an important tool in quantum optics and have been widely applied in the context of time–frequency analysis and pseudo-differential operators. Phase-space distribution functions are usually specified via integral transformations or convolutions which can be averted and subsumed by (displaced) parity operators proposed in this work. Building on earlier work for Wigner distribution functions (Grossmann in Commun Math Phys 48(3):191–194, 1976. https://doi.org/10.1007/BF01617867), parity operators give rise to a general class of distribution functions in the form of quantum-mechanical expectation values. This enables us to precisely characterize the mathematical existence of general phase-space distribution functions. We then relate these distribution functions to the so-called Cohen class (Cohen in J Math Phys 7(5):781–786, 1966. https://doi.org/10.1063/1.1931206) and recover various quantization schemes and distribution functions from the literature. The parity operator approach is also applied to the Born–Jordan distribution which originates from the Born–Jordan quantization (Born and Jordan in Z Phys 34(1):858–888, 1925. https://doi.org/10.1007/BF01328531). The corresponding parity operator is written as a weighted average of both displacements and squeezing operators, and we determine its generalized spectral decomposition. This leads to an efficient computation of the Born–Jordan parity operator in the number-state basis, and example quantum states reveal unique features of the Born–Jordan distribution.
en
dc.format.extent
68 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Born-Jordan distribution
en
dc.subject
phase spaces
en
dc.subject
parity operators
en
dc.subject
infinite-dimensional quantum systems
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Phase Spaces, Parity Operators, and the Born–Jordan Distribution
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97446
dcterms.bibliographicCitation.doi
10.1007/s00023-023-01338-6
dcterms.bibliographicCitation.journaltitle
Annales Henri Poincaré
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.originalpublishername
Springer International Publishing AG
dcterms.bibliographicCitation.originalpublisherplace
Cham (ZG)
dcterms.bibliographicCitation.pagestart
4169
dcterms.bibliographicCitation.pageend
4236
dcterms.bibliographicCitation.volume
24 (2023)
dcterms.bibliographicCitation.url
https://link.springer.com/10.1007/s00023-023-01338-6
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1424-0637
dcterms.isPartOf.eissn
1424-0661