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Abstract. Phase spaces as given by the Wigner distribution function pro-
vide a natural description of infinite-dimensional quantum systems. They
are an important tool in quantum optics and have been widely applied
in the context of time–frequency analysis and pseudo-differential opera-
tors. Phase-space distribution functions are usually specified via integral
transformations or convolutions which can be averted and subsumed by
(displaced) parity operators proposed in this work. Building on earlier
work for Wigner distribution functions (Grossmann in Commun Math
Phys 48(3):191–194, 1976. https://doi.org/10.1007/BF01617867), parity
operators give rise to a general class of distribution functions in the form
of quantum-mechanical expectation values. This enables us to precisely
characterize the mathematical existence of general phase-space distribu-
tion functions. We then relate these distribution functions to the so-called
Cohen class (Cohen in J Math Phys 7(5):781–786, 1966. https://doi.org/
10.1063/1.1931206) and recover various quantization schemes and distri-
bution functions from the literature. The parity operator approach is also
applied to the Born–Jordan distribution which originates from the Born–
Jordan quantization (Born and Jordan in Z Phys 34(1):858–888, 1925.
https://doi.org/10.1007/BF01328531). The corresponding parity opera-
tor is written as a weighted average of both displacements and squeezing
operators, and we determine its generalized spectral decomposition. This
leads to an efficient computation of the Born–Jordan parity operator in
the number-state basis, and example quantum states reveal unique fea-
tures of the Born–Jordan distribution.
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1. Introduction

There are at least three logically independent descriptions of quantum me-
chanics: the Hilbert space formalism [31], the path-integral method [49], and
the phase-space approach such as given by the Wigner function [24,32,52,69,
75,84,109,111,125]. The phase-space formulation of quantum mechanics was
initiated by Wigner in his ground-breaking work [123] from 1932, in which
the Wigner function of a spinless non-relativistic quantum particle was intro-
duced as a quasi-probability distribution. The Wigner function can be used to
express quantum-mechanical expectation values as classical phase-space aver-
ages. More than a decade later, Groenewold [63] and Moyal [99] formulated
quantum mechanics as a statistical theory on a classical phase space by map-
ping a quantum state to its Wigner function and they interpreted this corre-
spondence as the inverse of the Weyl quantization [119–121].

Coherent states have become a natural way to extend phase spaces to
more general physical systems [5,8–11,13,21,54,100]. In this regard, a new
focus on phase-space representations for coupled, finite-dimensional quantum
systems (as spin systems) [53,76–82,87,106,108,115] and their tomographic
reconstructions [81,85,86,107] has emerged recently. A spherical phase-space
representation of a single, finite-dimensional quantum system has been used to
naturally recover the infinite-dimensional phase space in the large-spin limit
[78,81]. These spherical phase spaces have been defined in terms of quantum-
mechanical expectation values of rotated parity operators [77,78,81,87,108,
115] (as discussed below) in analogy with displaced reflection operators in flat
phase spaces. But in the current work, we exclusively focus on the (usual)
infinite-dimensional case which has Heisenberg–Weyl symmetries [21,54,90,
100]. This case has been playing a crucial role in characterizing the quantum
theory of light [59] via coherent states and displacement operators [3,4,22,23]
and has also been widely used in the context of time–frequency analysis and
pseudo-differential operators [16–18,28,29,43,44,62]. Many particular phase
spaces have been unified under the concept of the so-called Cohen class [28,
29,44] (see Definition 2), i.e., all functions which are related to the Wigner
function via a convolution with a distribution (which is also known as the
Cohen kernel).

Phase-space distribution functions are mostly described by one of the
following three forms: (a) convolved derivatives of the Wigner function [43,44],
(b) integral transformations of a pure state (i.e., a rapidly decaying, complex-
valued function) [16–18,28,29,43,44,123], or (c) as integral transformations
of quantum-mechanical expectation values [3,4,22,23]. Also, Wigner functions
(and the corresponding Weyl quantization) are usually described by integral
transformations. But the seminal work of Grossmann [44,64] (refer also to
[102]) allowed for a direct interpretation of the Wigner function as a quantum-
mechanical expectation value of a displaced parity operator Π (which reflects
coordinates Πψ(x) = ψ(−x) of a quantum state ψ). In particular, Grossmann
[64] showed that the Weyl quantization of the delta distribution determines
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the parity operator Π. This approach has been widely adopted [15,25,33,36,
52,91,103,104].

However, parity operators similar to the one by Grossmann and Royer
[44,64,102] have still been lacking for general phase-space distribution func-
tions. (Note that such a form appeared implicitly for s-parametrized distri-
bution functions in [22,98].) In the current work, we generalize the previously
discussed parity operator Π [44,64,102] for the Wigner function by introducing
a family of parity operators Πθ (refer to Definition 3) which is parametrized
by a function or distribution θ. This enables us to specify general phase-space
distribution functions in the form of quantum-mechanical expectation values
(refer to Definition 4) as

Fρ(Ω, θ) := (π�)−1 Tr [ ρD(Ω)ΠθD†(Ω)].

We will refer to the above operator Πθ as a parity operator following the lead
of Grossmann and Royer [64,102] and given its resemblance and close analogy
to the reflection operator Π discussed in prior work [15,77,78,81,87,108,115].
Here, D(Ω) denotes the displacement operator and Ω describes suitable phase-
space coordinates (see Sect. 3.1). (Recall that � = h/(2π) is defined as the
Planck constant h divided by 2π.) The quantum-mechanical expectation val-
ues in the preceding equation give rise to a rich family of phase-space distri-
bution functions Fρ(Ω, θ) which represent arbitrary (mixed) quantum states
as given by their density operator ρ. In particular, this family of phase-space
representations contains all elements from the (above-mentioned) Cohen class
and naturally includes the pivotal Husimi Q and Born–Jordan distribution
functions.

We would like to emphasize that our approach to phase-space repre-
sentations averts the use of integral transformations, Fourier transforms, or
convolutions as these are subsumed in the parity operator Πθ which is inde-
pendent of the phase-space coordinate Ω. Although our definition also relies on
an integral transformation given by a Fourier transform, it is only applied once
and is completely absorbed into the definition of a parity operator, thereby
avoiding redundant applications of Fourier transforms. This leads to significant
advantages as compared to earlier approaches:

• conceptual advantages (see also [76,81,98,108,115]):
– The phase-space distribution function is given as a quantum-mechanical

expectation value. This form nicely fits with the experimental recon-
struction of quantum states [7,14,46,68,81,93,107].

– All the complexity from integral transformations (etc.) is condensed
into the parity operator Πθ.

– The dependence on the distribution θ and the particular phase space
is separated from the displacement D(Ω).

• computational advantages:
– The repeated and expensive computation of integral transformations

(etc.) in earlier approaches is avoided as Πθ has to be determined
only once. Also, the effect of the displacement D(Ω) is relatively
easy to calculate.
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In this regard, the current work can also be seen as a continuation of [81]
where the parity operator approach has been emphasized, but mostly for
finite-dimensional quantum systems. Moreover, we connect results from quan-
tum optics [22,23,59,88], quantum harmonic analysis [30,37–40,43,44,74,118],
and group-theoretical approaches [21,54,90,100]. It is also our aim to narrow
the gap between different communities where phase-space methods have been
successfully applied.

On the other hand, a major contribution of our work is the analysis of
existence properties of generalized phase-space distributions and their par-
ity operators. While the Wigner function has been known to exist for the
general class of tempered distributions (a class of generalized functions that
includes the pivotal L2 space), we further illuminate which classes of Cohen
kernels yield well-defined generalized phase-space distribution functions. Such
existence questions are fully absorbed into the parity operators and precise
conditions are used to guarantee their mathematical existence.

Similar to the parity operator Π (which is the Weyl quantization of the
delta distribution), we show that its generalizations Πθ are Weyl quantizations
of the corresponding Cohen kernel θ (refer to Sect. 4.3 for the precise definition
of the Weyl quantization used in this work). We discuss how these general re-
sults reduce to well-known special cases, and discuss properties of phase-space
distributions in relation to their parity operators Πθ. In particular, we consider
the class of s-parametrized distribution functions [22,23,59,98], which include
the Wigner, Glauber P, and Husimi Q functions, as well as the τ -parametrized
family which has been proposed in the context of time–frequency analysis
and pseudo-differential operators [16–18,43]. We derive spectral decomposi-
tions of parity operators for all of these phase-space families, including the
Born–Jordan distribution. Relations of the form Πθ = Aθ ◦ Π motivate the
name “parity operator” as they are in fact compositions of the usual parity
operator Π followed by some operator Aθ that usually corresponds to a geo-
metric or physical operation (which commutes with Π). In particular, Aθ is
a squeezing operator for the τ -parametrized family and corresponds to pho-
ton loss for the s-parametrized family (assuming s < 0). This structure of
the parity operators Πθ connects phase spaces to elementary geometric and
physical operations (such as reflection, squeezing operators, photon loss), and
these concepts are central to applications: The squeezing operator models a
nonlinear optical process which generates non-classical states of light in quan-
tum optics [60,88,94]. These squeezed states of light have been widely used
in precision interferometry [61,96,110,124] or for enhancing the performance
of imaging [92,116]; also, the gravitational-wave detector GEO600 has been
operating with squeezed light since 2010 [1,65].

The Born–Jordan distribution and its parity operator constitute a most
peculiar instance among the phase-space approaches. This distribution func-
tion has convenient properties, e.g., it satisfies the marginal conditions and
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therefore allows for a probabilistic interpretation [43]. The Born–Jordan dis-
tribution is, however, difficult to compute. But most importantly, the Born–
Jordan distribution and its corresponding quantization scheme have a fun-
damental importance in quantum mechanics. In particular, there have been
several attempts in the literature to find the “right” quantization rule for ob-
servables using either algebraic or analytical techniques. In a recent paper [42],
one of us has analyzed the Heisenberg and Schrödinger pictures of quantum
mechanics, and it is shown that the equivalence of both theories requires that
one must use the Born–Jordan quantization rule (as proposed by Born and
Jordan [20])

(BJ) xmp� �→ 1
m+1

m∑

k=0

x̂kp̂�x̂m−k,

instead of the Weyl rule

(Weyl) xmp� �→ 1
2m

m∑

k=0

(
m

k

)
x̂kp̂�x̂m−k

for monomial observables. The Born–Jordan and Weyl rules yield the same
result only if m < 2 or � < 2; for instance, in both cases the quantization of the
product xp is 1

2 (x̂p̂ + p̂x̂). It is, however, easy to find physical examples which
give different results. Consider, for instance, the square of the z component of
the angular momentum: It is given by

�2z = x2p2
y + y2p2

x − 2xpxypy

and its Weyl quantization is easily seen to be

OpWeyl(�
2
z) = x̂2

xp̂2
y + x̂2

yp̂2
x − 1

2 (x̂xp̂x+p̂xx̂x)(x̂y p̂y+p̂yx̂y) (1)

while its Born–Jordan quantization is the different expression

OpBJ(�
2
z) = x̂2

xp̂2
y + x̂2

yp̂2
x − 1

2 (x̂xp̂x+p̂xx̂x)(x̂yp̂y+p̂yx̂y) − 1
6�

2. (2)

(Recall that the operators x̂η and p̂κ satisfy the canonical commutation re-
lations [x̂η, p̂κ] = i�δηκ using the spatial coordinates η, κ ∈ {x, y, z} and the
Kronecker delta δηκ.) One of us has shown in [45] that the use of (2) instead
of (1) solves the so-called angular momentum dilemma [34,35].

To a general observable a(x, p), the Weyl rule associates the operator

OpWeyl(a) = (2π�)−1

∫
Fσa(x, p)D(x, p) dx dp

where Fσa is the symplectic Fourier transform of a and D(x, p) the displace-
ment operator (see Sect. 3.1); in the Born–Jordan case, this expression is re-
placed with

OpBJ(a) = (2π�)−1

∫
Fσa(x, p)KBJ(x, p)D(x, p) dx dp

where the filter function KBJ(x, p) is given by

KBJ(x, p) = sinc(px
2�

) =
sin(px

2�
)

px/(2�)
.
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We obtain significant, new results for the case of Born–Jordan distri-
butions and therefore substantially advance on previous characterizations. In
particular, we derive its parity operator ΠBJ in the form of a weighted average
of geometric transformations

ΠBJ = 1
4π�

∫
sinc(px

2�
)D(x, p) dx dp =

[
1
4

∫ ∞

−∞
sech( ξ

2 )S(ξ) dξ

]
Π, (3)

where D(x, p) is the displacement operator and S(ξ) is the squeezing operator
(see Eq. (46)) with a real squeezing parameter ξ. We have used the sinus
cardinalis sinc(x) := sin(x)/x and the hyperbolic secant sech(x) := 1/cosh(x)
functions. The parity operator ΠBJ in Eq. (3) decomposes into a product
Πθ = Aθ◦Π containing the usual reflection operator Π. This is another example
of the above-discussed motivation for our terminology of parity operators. We
prove in Proposition 2 that ΠBJ is a bounded operator on the Hilbert space of
square-integrable functions and therefore gives rise to well-defined phase-space
distribution functions of arbitrary quantum states. We derive a generalized
spectral decomposition of this parity operator based on a continuous family
of generalized eigenvectors that satisfy the following generalized eigenvalue
equation for every real E (see Theorem 5):

ΠBJ |ψE
±〉 = ±π/2 sech(πE) |ψE

±〉.
Facilitating a more efficient computation of the Born–Jordan distribution, we
finally derive explicit matrix representations in the so-called Fock or number-
state basis, which constitutes a natural representation for bosonic quantum
systems such as in quantum optics [60,88,94]. In this case, the parity opera-
tor ΠBJ of the Born–Jordan distribution is not diagonal in the Fock basis—as
compared to the diagonal parity operators of s-parametrized phase spaces
(cf. [81]) that enable the experimental reconstruction of distribution functions
from photon-count statistics [7,14,46,93] in quantum optics. We calculate the
matrix elements [ΠBJ]mn in the Fock or number-state basis and provide a
convenient formula for a direct recursion, for which we conjecture that the
matrix elements are completely determined by eight rational initial values.
This recursion scheme has significant computational advantages for calculat-
ing Born–Jordan distribution functions as compared to previous approaches
and allows for an efficient implementation. In particular, large matrix repre-
sentations of the parity operator ΠBJ can be well approximated using rank-9
matrices. We finally illustrate our results for simple quantum states by calculat-
ing their Born–Jordan distributions and comparing them to other phase-space
representations. Let us summarize the main results of the current work:

– quantum-mechanical expectation values of the parity operators Πθ from
Definition 3 define distribution functions (see Definition 4) and form the
Cohen class (Theorem 1);

– existence properties of parity operators and generalized phase-space func-
tions are clarified in Sect. 4. We refer in particular to the crucial Lemma 2;

– the parity operators Πθ are Weyl quantizations of the corresponding Co-
hen convolution kernels θ (Sect. 4.3);
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– parity operators for important distribution functions are summarized in
Sect. 4.4 along with their operator norms (Theorem 2) and generalized
spectral decompositions in Sect. 5.2;

– the Born–Jordan parity operator is a weighted average of displacements
(Theorem 3) or, equivalently, a weighted average of squeezing operators
(Theorem 4), and it is bounded (Proposition 2);

– the Born–Jordan parity operator admits a generalized spectral decompo-
sition (Theorem 5);

– its matrix representation is calculated in the number-state basis in Theo-
rem 6; and an efficient, recursion-based computation scheme is proposed
in Conjecture 1.

Our work has significant implications: General (infinite-dimensional) phase-
space functions can now be conveniently and effectively described as natural
expectation values. We provide a much more comprehensive understanding of
Born–Jordan phase spaces and means for effectively computing the correspond-
ing phase-space functions. Working in a rigorous mathematical framework, we
also facilitate future discussions of phase spaces by connecting different com-
munities in physics and mathematics.

We start by recalling precise definitions of distribution functions and
quantum states for infinite-dimensional Hilbert spaces in Sect. 2. In Sect. 3,
we discuss phase-space translations of quantum states using coherent states,
recall one known formulation of translated parity operators, and relate a gen-
eral class of phase spaces to Wigner distribution functions and their properties.
We note that an experienced reader can skip most of the introductory Sects. 2
and 3 and jump directly to our results. These preparations will, however, guide
our study of phase-space representations of quantum states as expectation val-
ues of displaced parity operators in Sect. 4. We present and discuss our results
for the case of the Born–Jordan distribution and its parity operator in Sect. 5.
Formulas for the matrix elements of the Born–Jordan parity operator are de-
rived in Sect. 6. Explicit examples for simple quantum systems are discussed
and visualized in Sect. 7, before we conclude. A larger part of the proofs are
relegated to “Appendices.”

2. Distributions and Quantum States

All of our discussion and results in this work will strongly rely on precise
notions of distributions and related descriptions of quantum states in infinite-
dimensional Hilbert spaces. Although most (or all) of this material is quite
standard and well known [44,66,73,101], we find it prudent to shortly sum-
marize this background material in order to fix our notation and keep our
presentation self-contained. This will also help to clarify differences and con-
nections between divergent concepts and notations used in the literature. We
hope this will also contribute to narrowing the gap between different physics
communities that are interested in this topic.
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2.1. Schwartz Space and Fourier Transforms

We will now summarize function spaces that are central to this work, re-
fer also to [44, Ch. 1.1.3] and to [56,112]. The set of all smooth, complex-
valued functions on R

n that decrease faster (together with all of their par-
tial derivatives) than the reciprocal of any polynomial is called the Schwartz
space and is usually denoted by S(Rn), refer to [101, Ch. V.3] or [73, Ch. 6].
More precisely, a function ψ : R

n → C is called fast decreasing if the abso-
lute values |xβ∂α

x ψ(x)| are bounded for each multi-index of natural numbers
α := (α1, . . . , αn) and β := (β1, . . . , βn), where by definition xβ := xβ1

1 · · · xβn
n

and ∂α
x := ∂α1

x1
· · · ∂αn

xn
, refer to [44, Ch. 1.1.3]. This gives rise to a family of

seminorms ‖ψ‖α,β := supx∈Rn |xβ∂α
x ψ(x)| which turn S(Rn) into a topological

space which is even a Fréchet space [101, Thm. V.9].
The topological dual space S ′(Rn) of S(Rn) is often referred to as the

space of tempered distributions, and we will denote the distributional pairing
for φ ∈ S ′(Rn) and ψ ∈ S(Rn) as 〈φ, ψ〉 := φ(ψ) ∈ C. In Sect. 2, we will
consistently use the symbol φ to denote distributions and ψ,ψ′ to denote
Schwartz or square-integrable functions. Also, note that S(Rn) is dense in
L2(Rn),1 and that tempered distributions naturally include the usual function
spaces S(Rn) ⊂ L2(Rn) ⊂ S ′(Rn) via distributional pairings in the form of
an integral 〈φ, ψ〉 =

∫
Rn φ∗(x)ψ(x) dx, where φ∗(x) is the complex conjugate

of φ(x) ∈ L2(Rn) or φ(x) ∈ S(Rn). This inclusion is usually referred to as a
rigged Hilbert space [26,57] or the Gelfand triple.

Remarkably, every tempered distribution is the derivative of some poly-
nomially bounded continuous function, that is, given φ ∈ S ′(Rn) there exists
g : R

n → C continuous such that |g(x)| ≤ C(1+x2)m for some C,m ≥ 0 and
all x ∈ R

n, and a multi-index α such that 〈φ, ψ〉=(−1)|α| ∫
Rn g∗(x)(∂α

x ψ)(x) dx
for all ψ ∈ S(Rn)—for short one can write φ = ∂α

x g [101, Thm. V.10].
In particular, one can construct tempered distributions by considering

smooth functions φ that (together with all of their partial derivatives) grow
slower than certain polynomials. More precisely, a smooth map φ : R

n → C

is said to be slowly increasing or of slow growth if for every α = (α1, . . . , αn)
there exist constants C, m, and A such that |∂α

x φ(x)| ≤ C‖x‖m for all ‖x‖ > A,
where ‖x‖ is the Euclidean norm in R

n, refer to [73, Ch. 6.2]. A standard ex-
ample of such functions are polynomials. In particular, every slowly increasing
function φ(x) generates a tempered distribution 〈φ, ψ〉 =

∫
Rn φ∗(x)ψ(x) dx for

all ψ ∈ S(Rn), and therefore, such functions are usually denoted as φ(x) ∈
S ′(Rn) (refer to [73, Ch. 6.2]).

Example 1. This motivates the delta distribution 〈δb, ψ〉 := ψ(b) which is in
its integral representation commonly written as

∫
Rn δ(x−b)ψ(x) dx = ψ(b). We

emphasize that the notation δ(x) is, however, only formal, cf. [101, Eq. (V.3)].
Moreover, this tempered distribution is generated by the second derivative of

1Recall that the Lebesgue spaces Lq(Rn) with 0 < q < ∞ are subspaces of equivalence
classes of measurable functions f : R

n → C that differ only on a set of measure zero such
that the qth power of their absolute value is Lebesgue integrable, i.e.,

∫
Rn |f(x)|q dx < ∞

[101].
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the polynomially bounded continuous function g(x) := x−b for x ≥ b and
zero otherwise, i.e., 〈δb, ψ〉 =

∫
R

g(x)ψ′′(x) dx for all ψ ∈ S(R) [101, Ch. V,
Ex. 8]. This generating function is not unique as, for example, one also has
δb = (d2/dx2)|x−b|/2.

For the rest of our work, we will restrict the general space R
n to the case

of R which is most relevant for the applications we highlight. This simplifies
our notation, even though many statements could be generalized.

Recall that for all a ∈ S(R2) the symplectic Fourier transform [Fσa](x, p)
(see App. B in [44]) is related to the usual Fourier transform2

[Fa](x, p) := (2π�)−1

∫
e− i

�
(x′x+p′p)a(x′, p′) dx′ dp′,

up to a coordinate transformation [Fσa](x, p) = [Fa](p,−x) where

[Fσa](x, p) := (2π�)−1

∫
e− i

�
(x′p−xp′)a(x′, p′) dx′ dp′. (4)

Note that the square [FσFσa](x, p) = a(x, p) is equal to the identity, and that
the Fourier transform of every function in S(Rn) is also in S(Rn), cf. [101,
Ch. IX.1]. The fact that Fσ is Hermitian, i.e., 〈Fσφ, ψ〉L2 = 〈φ,Fσψ〉L2 for
all φ, ψ ∈ S(R2) (see Sect. 2.2) motivates us to define the symplectic Fourier
transform of tempered distributions via the distributional pairing 〈Fσφ, ψ〉 :=
〈φ,Fσψ〉 = φ(Fσψ) for φ ∈ S′(R2) and ψ ∈ S(R2). Thus, this is the extension
of Fσ with respect to the distributional pairing in our sense, cf. also “Appendix
A.” In particular, the symplectic Fourier transform generalizes to phase-space
distribution functions a(x, p) without further adjustment and all the properties
of Fσ on S(R2) transfer to S ′(R2).

Let us come back to our previous example: the delta distribution can be
identified formally via the brackets 〈δ0,Fσψ〉 = [Fσψ](0) = (2π�)−1〈1, ψ〉 as
the Fourier transform δ(x) = (2π�)−1Fσ[1] of the constant function, refer to
[73, Ch. 6.4].

2.2. Quantum States and Expectation Values

Let us denote the abstract state vector of a quantum system by |ψ〉 which is an
element of an abstract, infinite-dimensional, separable complex Hilbert space
(here and henceforth denoted by) H. The Hilbert space H is known as the
state space and it is equipped with a scalar product 〈 · | · 〉 [66]. Considering
projectors Pψ := |ψ〉〈ψ| defined via the open scalar products Pψ = 〈ψ| · 〉 |ψ〉,
an orthonormal basis of H is given by {|φn〉, n ∈ N} if 〈φn|φm〉 = δnm for all
m,n ∈ N and

∑∞
n=0 Pφn

= 1 in the strong operator topology. For a broader
introduction to this topic we refer to [66].

Depending on the given quantum system, explicit representations of the
state space can be obtained by specifying its Hilbert space [58]. In the case

2A multitude of sign and normalization conventions are commonly used throughout various
fields as characterized by the two parameters q and r in the generic expression for the

one-dimensional Fourier transform F [a(·)](x) =
√

|r|(2π)q−1
∫

eirxx′
a(x′) dx′. In this work,

q = 0 (because then F [F [a]](x) = a(−x) for all a ∈ S(R)) and r = −�
−1.



4178 B. Koczor et al. Ann. Henri Poincaré

of bosonic systems, the Fock (or number-state) representation is widely used.
There a quantum state |ψ〉 is an element of the Hilbert space �2 of square-
summable sequences of complex numbers [66], and it is characterized by its
expansion |ψ〉 =

∑∞
n=0 ψn|n〉 into the Fock basis {|n〉, n = 0, 1, . . . } of number

states using the expansion coefficients ψn = 〈n|ψ〉 ∈ C, refer to, e.g., [23] and
[66, Ch. 11]. The scalar product 〈ψ|ψ′〉 then corresponds to the usual scalar
product of vectors, i.e., to the absolutely convergent sum

∑∞
n=0(ψn)∗ψ′

n =:
〈ψ|ψ′〉�2 . The corresponding norm of vectors is then given by ‖ψ‖�2 = ‖(|ψ〉)‖�2

= [〈ψ|ψ〉�2 ]1/2.
For a quantum state |ψ〉, the coordinate representation ψ(x) ∈ S(R)

and its Fourier transform (or momentum representation) ψ(p) ∈ S(R) are
given by complex, square-integrable, and smooth functions that are also fast
decreasing. The quantum state |ψ〉 =

∫
R

ψ(x)|x〉dx of ψ(x) = 〈x|ψ〉 is then
defined via coordinate eigenstates3 |x〉. The coordinate representation of a
coordinate eigenstate is given by the distribution δ(x′−x) ∈ S ′(R), refer to
[58,66]. The scalar product 〈ψ|ψ′〉 is then fixed by the usual L2 scalar product,
i.e., by the convergent integral

∫
R

ψ∗(x)ψ′(x) dx =: 〈ψ|ψ′〉L2 . This integral
induces the norm of square-integrable functions via ‖ψ(x)‖L2 = [〈ψ|ψ〉L2 ]1/2.

The two examples given above are particular representations of the state
space, which are convenient for specific physical systems; however, these rep-
resentations are well known to be equivalent via

H � �2 � L2(R,dx) � L2(R,dp), (5)

refer to Theorem 2 in [58]. In particular, any coordinate representation ψ(x) ∈
L2(R) of a quantum state |ψ〉 can be expanded in the number-state basis into
ψ(x) =

∑∞
n=1 ψn ψFock

n (x) via ψn =
∫

R
[ψFock

n (x)]∗(x)ψ(x) dx where ψFock
n (x) ∈

S(R) are eigenfunctions of the quantum harmonic oscillator. For any ψ(x),
ψ′(x) ∈ L2(R), the L2 scalar product is equal to the �2 scalar product
∫

R

ψ∗(x)ψ′(x) dx =
∞∑

n,m=1

ψ∗
nψ′

m

∫

R

[ψFock
n (x)]∗ψFock

m (x) dx =
∞∑

n=1

ψ∗
nψ′

n, (6)

and it is independent of the chosen orthonormal basis as any two orthonor-
mal bases are related via a unitary transformation. The Plancherel formula∫

R
ψ∗(x)ψ′(x) dx =

∫
R

ψ∗(p)ψ′(p) dp yields the equivalence L2(R,dx)
� L2(R,dp).

Motivated by the invariance of the scalar product under the choice of
representation, in the following we will consistently use the notation 〈 · | · 〉 for
scalar products in Hilbert space, without specifying the type of representation.
However, in order to avoid confusion with different types of operator or Eu-
clidean norms, we will use in the following the explicit norms ‖ψ(x)‖L2 and
‖ |ψ〉‖�2 , despite their equivalence.

3For the position operator x̂ : S(R) → S(R), ψ(x) �→ xψ(x), one can consider the dual
x̂′ : S′(R) → S′(R), φ �→ φ ◦ x̂. This map satisfies the generalized eigenvalue equation

x̂′|x0〉 = x0|x0〉 for all x0 ∈ R where its generalized eigenvector |x0〉 ∈ S′(R) is the delta
distribution, which allows for the resolution of the position operator x̂ =

∫
R

x|x〉〈x| dx. For

more details, we refer to [57] or [58, p. 1906].
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Finally, let us summarize some of the main concepts on operators on
infinite-dimensional Hilbert spaces, refer to [97, Ch. 15 & 16] for a compre-
hensive introduction. We start with the set of bounded linear operators B(H),
that is, the collection of all A : H → H linear for which the operator norm

‖A‖sup := sup
‖ |ψ〉‖H=1

‖A|ψ〉‖H (7)

is finite. As discussed previously—after translating A into an equivalent oper-
ator on L2 or �2—this formalism encompasses ‖A‖sup = sup‖ |ψ〉‖�2=1 ‖A|ψ〉‖�2

for the Hilbert space �2 (number-state representation), as well as ‖A‖sup =
sup‖ψ(x)‖L2=1 ‖Aψ(x)‖L2 for square-integrable functions ψ(x) (coordinate rep-
resentation). Next one looks at the set of all compact operators4 K(H) ⊆ B(H)
as every compact A can be written as

∑
n∈N sn(A)|fn〉〈gn| where {|fn〉}n∈N ,

{|gn〉}n∈N , N ⊆ N are orthonormal systems and sn(A) > 0 are the unique
singular values of A [97, Prop. 16.3]. This lets one define the trace class
B1(H) := {A ∈ K(H) :

∑
n∈N sn(A) < ∞} and the Hilbert–Schmidt oper-

ators B2(H) := {A ∈ K(H) :
∑

n∈N sn(A)2 < ∞}.
For all A ∈ B1(H), one then defines the trace via the absolutely con-

vergent sum Tr(A) :=
∑∞

n=1〈ψn|Aψn〉 where the right-hand side is indepen-
dent of the chosen orthonormal basis {|ψn〉 , n ∈ N} of H. The name “trace
class” is due to the fact that it is the largest subset of B(H) where the trace
can be reasonably defined [97, Prop. 16.18]. Equipped with the trace norm
‖A‖1 :=

∑
n∈N sn(A), the trace class is a Banach space, and the Hilbert–

Schmidt operators even form a Hilbert space under the (well-defined) in-
ner product 〈A,B〉HS := Tr(A†B); here, A† is the adjoint of A (which is
in finite dimensions given by the complex conjugated and transposed ma-
trix). Trace-class operators A ∈ B1(H) have the important property that
their products with bounded operators B ∈ B(H) are also in the trace class,
i.e., AB,BA ∈ B1(H). With this, one finds that the trace is linear and con-
tinuous with respect to the trace norm, and one has the following important
trace inequality: |Tr(AB)| ≤ ‖A‖1‖B‖sup for all A ∈ B1(H), B ∈ B(H) [97,
Lemma 16.23].

Thus, one defines a density operator or state ρ ∈ B1(H) to be positive
semi-definite5 with Tr(ρ) = 1. It therefore admits a spectral decomposition
[97, Prop. 16.2], i.e., there exists an orthonormal system {|ψn〉, n ∈ N} in H
such that

ρ =
∞∑

n=1

pn|ψn〉〈ψn|. (8)

The probabilities {pn, n ∈ N} satisfy p1 ≥ p2 ≥ . . . ≥ 0 and
∑∞

n=1 pn = 1. As
expectation values of observables are computed via the trace 〈O〉ρ = Tr(ρO) =∑∞

n=1 pn〈ψn|Oψn〉 where O ∈ B(H) is self-adjoint, as a simple consequence of
the trace inequality stated earlier one finds:

4A linear map A between normed spaces is called compact if the closure of the image of the
closed unit ball under A is compact.
5An operator A ∈ B(H) is said to be positive semi-definite if A is self-adjoint and 〈x|Ax〉 ≥ 0

for all x ∈ H.
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Lemma 1. The expectation value of an observable O in a mixed quantum state
is upper bounded by the operator norm |Tr(ρO)| ≤ ‖O‖sup for arbitrary density
operators ρ.

3. Coherent States, Phase Spaces, and Parity Operators

We continue to fix our notation by discussing an abstract definition of phase
spaces that relies on displaced parity operators. This usually appears con-
cretely in terms of coherent states [21,54,90,100], for which we consider two
equivalent but equally important parametrizations of the phase space using
the coordinates α or (x, p) (see below). This definition of phase spaces can
be also related to convolutions of Wigner functions which is usually known
as the Cohen class [28,29,44]. We also recall important postulates for Wigner
functions as given by Stratonovich [21,113], and these will be considered later
in the context of general phase spaces.

3.1. Phase-Space Translations of Quantum States

We will now recall a definition of the phase space for quantum-mechanical sys-
tems via coherent states, refer to [21,50,54,72,90,100]. We consider a quantum
system which has a specific dynamical symmetry group given by a Lie group G.
The Lie group G acts on the Hilbert space H using an irreducible unitary rep-
resentation D of G. By choosing a fixed reference state as an element |0〉 ∈ H
of the Hilbert space, one can define a set of coherent states as |g〉 := D(g)|0〉
where g ∈ G. Considering the subgroup H ⊆ G of elements h ∈ H that act on
the reference state only by multiplication D(h)|0〉 := eiφ|0〉 with a phase factor
eiφ, any element g ∈ G can be decomposed into g = Ωh with Ω ∈ G/H. The
phase space is then identified with the set of coherent states |Ω〉 := D(Ω)|0〉.
In the following, we will consider the Heisenberg–Weyl group6 H3, for which
the phase space Ω ∈ H3/R is a plane.

Next, we introduce the corresponding displacement operators that gen-
erate translations of the plane. These operators are also known as Heisenberg–
Weyl operators [44] or, in the physics literature, simply as Weyl operators
[6,41,70]. In particular, for harmonic oscillator systems, the phase space Ω ≡
α ∈ C is usually parametrized by the complex eigenvalues α of the annihilation
operator â and Glauber coherent states can be represented explicitly [23] in
the so-called Fock (or number-state) basis as

|α〉 = e−|α|2/2
∞∑

n=0

αn√
n!

|n〉 = eαâ†−α∗â|0〉 =: D(α)|0〉. (9)

Here, the second equality specifies the displacement operator D(α) as a power
series of the usual bosonic annihilation â and creation â† operators, which

6For an elegant review of the Heisenberg–Weyl group and its numerous applications—
including but certainly not limited to harmonic analysis (e.g., relation to the displacement
operator)—we refer to [71].
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satisfy the commutation relation [â, â†] = 1, refer to Eq. (2.11) in [23]. In
particular, the number-state representation of displacements is given by [23]

[D(α)]mn := 〈m|D(α)|n〉 = ( n!
m! )

1/2αm−ne−|α|2/2L(m−n)
n (|α|2), (10)

for7 m ≥ n where L
(m−n)
n (x) are generalized Laguerre polynomials. This is

the usual formulation for bosonic systems (e.g., in quantum optics) [88], where
the optical phase space is the complex plane and the phase-space integration
measure is given by dΩ = 2� d2α = 2� d�(α) d�(α) (where one often sets
h = 2π� = 1, cf., [21–23]). The real and imaginary parts of α are denoted
by �(α) and �(α), respectively. The annihilation operator admits a simple
decomposition

â = 2�

∫ ∞

−∞

∫ ∞

−∞
α |α〉〈α|d�(α) d�(α)

with respect to its eigenvectors, see, e.g., [23, Eqs. (2.21)–(2.27)].
Let us now consider the coordinate representation ψ(x) ∈ S(R) of a

quantum state. The phase space is parametrized by Ω ≡ (x, p) ≡ z ∈ R
2 and

the integration measure is dΩ = dz = dx dp. The displacement operator acts
via (see also [119–121])

D(x0, p0)ψ(x) := e
i
�

(p0x− 1
2p0x0)ψ(x−x0) = e− i

�
(x0p̂−p0x̂)ψ(x), (11)

where x, x0, p0 ∈ R. The right-hand side of Eq. (11) specifies the displacement
operator as a power series of the usual operators x̂ and p̂, which satisfy the
commutation relation [x̂, p̂] = i�, refer to [44, Sec. 1.2.2., Def. 2].

The most common representations of these two unbounded operators are
x̂ψ(x) = xψ(x) and p̂ψ(x) = −i�∂ψ(x)/∂x. Displacements of tempered distri-
butions φ(x) ∈ S ′(R) are understood via the distribution pairings (D(Ω)φ)(ψ) :=
φ(D(−Ω)ψ) where −Ω = (−x0,−p0). This definition guarantees that8

D(Ω)[〈φ, · 〉](ψ) = 〈D(Ω)φ, ψ〉
as integrals from Sect. 2.1 (cf. Example 3(2), “Appendix A”) for all φ : R → C

such that 〈φ, · 〉 ∈ S ′(R), and all ψ ∈ S(R), Ω ∈ R
2. In particular it does

not matter whether D(Ω) acts on a function φ : R → C or on the induced
functional ψ �→ 〈φ, ψ〉.

The two (above mentioned) physically motivated examples are partic-
ular representations of the displacement operator for the Heisenberg–Weyl
group in different Hilbert spaces that rely on different parametrizations of
the phase space. Let us now highlight the equivalence of these two represen-
tations. In particular, we obtain the formulas âλ = (λx̂ + iλ−1p̂)/

√
2� and

â†
λ = (λx̂ − iλ−1p̂)/

√
2� for any nonzero real conversion factor λ with phys-

ical dimension
√

�/[x] (where [x] denotes the physical dimension of x), refer
to Eqs. (2.1–2.2) in [23]. In the context of quantum optics, the operators x̂

7Note that for m < n one has [D(α)]mn = [D(−α)]∗nm.
8This differs from other approaches where one considers the embedding ι : S(R) → S′(R),

φ �→
∫

φ(x)(·)(x) dx and the extension of D to tempered distributions is given by D(−x0, p0),

cf. Example 3(1) in “Appendix A.”
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and p̂ are the so-called optical quadratures [88]. The operators âλ and â†
λ

are now defined on the Hilbert space L2(R), whereas â and â† act on ele-
ments of the Hilbert space �2. For any λ �= 0, they reproduce the commutator
[âλ, â†

λ] = idL2 , i.e., [âλ, â†
λ]ψ(x) = ψ(x) for all ψ(x) ∈ L2(R), and they corre-

spond to raising and lowering operators of the quantum harmonic oscillator9

eigenfunctions ψFock
n (x), refer to [66]. Substituting now x̂ =

√
�/2λ−1(âλ+â†

λ)
and p̂ = −i

√
�/2λ(âλ−â†

λ) into the exponent on the right-hand side of (11)
yields

− i
�
(x0p̂ − p0x̂) = â†

λ(x0λ + iλ−1p0)/
√

2� − âλ(x0λ − iλ−1p0)/
√

2�.

This then confirms the equivalence

D(x0, p0)ψ(x) = e− i
�

(x0p̂−p0x̂)ψ(x) = eâ†
λα−âλα∗

ψ(x) = D(α)ψ(x), (12)

where the phase-space coordinate α is defined by α := (x0λ + iλ−1p0)/
√

2�.
Note that the corresponding phase-space element is then dΩ = 2� d�(α) d�(α)
= dx dp which is independent of the choice of λ. Let us also recall two prop-
erties of the displacement operator [119–121] (see, e.g., [44, p. 7]):

D(x0, p0)D(x1, p1) = e
i
�

(p0x1−p1x0)D(x1, p1)D(x0, p0) (13)

D(x0+x1, p0+p1) = e− i
2�

(p0x1−p1x0)D(x0, p0)D(x1, p1). (14)

In the following, we will use both phase-space coordinates α and (x, p)
interchangeably. The displacement operator is obtained in both parametriza-
tions, and they are equivalent via (12). Motivated by the group definition, we
will also use the parametrization Ω for the phase space via D(Ω), where Ω
corresponds to any representation of the group, including the ones given by
the coordinates α and (x, p).

3.2. Phase-Space Reflections and the Grossmann–Royer Operator

Recall that the parity operator Π reflects wave functions via Πψ(x) := ψ(−x)
and Πψ(p) := ψ(−p) for coordinate-momentum representations [15,44,64,91,
102], and Π|Ω〉 := |−Ω〉 for phase-space coordinates of coherent states [15,22,
91,102]. This parity operator is obtained as a phase-space average

Π := (4π�)−1

∫
D(Ω) dΩ (15)

of the displacement operator from (11). One finds for all ψ ∈ S(R), x ∈ R that

[Πψ](x) = (4π�)−1

∫
[D(Ω)ψ](x) dΩ

= 1
2 · (2π�)−1

∫
e− i

�
(xp′−x′p)[D(Ω)ψ](x) dΩ

∣∣∣
x′=p′=0

= 1
2

{
Fσ[Dψ(x)](Ω′)

}∣∣
Ω′=0

,

9For example, the choice λ =
√

mω corresponds to the quantum harmonic oscillator of mass
m and angular frequency ω, and λ =

√
εω is related to a normal mode of the electromagnetic

field in a dielectric.
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or Π = 1
2{[FσD](Ω′)}|Ω′=0 for short. Thus, the parity operator equals eval-

uating the symplectic Fourier transform of the displacement operator at the
phase-space point Ω′ = 0. This is related to the Grossmann–Royer operator

1
2 [FσD](−Ω) = D(Ω)ΠD†(Ω), (16)

which is the parity operator transformed by the displacement operator [15,44,
64,91,102]. Here, we use in both (15) and (16) an abbreviated notation for
formal integral transformations of the displacement operator.

Remark 1. This abbreviation in Eq. (16) is justified as the existence of the cor-
responding integral (Πφ)(ψ) = (4π�)−1

∫
φ(D†(Ω)ψ) dΩ = (4π�)−1

∫
φ(D(Ω)

ψ) dΩ is guaranteed by, e.g., [44, Sec. 1.3., Prop. 8] for all φ ∈ S ′(R). In the
following, we will use this abbreviated notation for formal integral transfor-
mations of the displacement operator, i.e., by dropping φ. However, we might
need to restrict the domain of more general parity operators to ensure the
existence of the respective integrals.

3.3. Wigner Function and the Cohen Class

The Wigner function Wψ(x, p) of a pure quantum state |ψ〉 was originally
defined by Wigner in 1932 [123], and it is (in modern terms) the integral
transformation of a pure state ψ ∈ L2(R), i.e.,

Wψ(x, p) = (2π�)−1

∫
e− i

�
pyψ∗(x− 1

2y)ψ(x+ 1
2y) dy

= (π�)−1〈ψ, D(x, p)ΠD†(x, p)ψ〉 = (π�)−1 Tr [ (|ψ〉〈ψ|)D(Ω)ΠD†(Ω)].

The second and third equalities specify the Wigner function using the
Grossmann–Royer operator [44,64] from (16), refer to [44, Sec. 2.1.1., Def. 12].
We use this latter form to extend the definition of the Wigner function to
mixed quantum states as in [4,15,22,102].

Definition 1. The Wigner function Wρ(Ω) ∈ L2(R2) of an infinite-dimensional
density operator (or quantum state) ρ =

∑
n pn|ψn〉〈ψn| ∈ B1(L2(R)) is pro-

portional to the quantum-mechanical expectation value

Wρ(Ω) := (π�)−1 Tr [ ρD(Ω)ΠD†(Ω)] =
∑

n

pnWψn
(Ω) (17)

of the Grossmann–Royer operator from (16), which is the parity operator Π
transformed by the displacement operator D(Ω), refer also to [4,15,22,44,91,
102].

The square-integrable cross-Wigner transform Wψ,ψ′(Ω) ∈ L2(R2) of two
functions ψ,ψ′ ∈ L2(R) used in time–frequency analysis [43,44] is obtained
via the finite-rank operator A = |ψ〉〈ψ′| in the form Wψ,ψ′(Ω) := WA(Ω).
Furthermore, as {D(Ω) : Ω ∈ C} forms a subgroup of the unitary group, the
range of Wρ is a subset of the ρ-numerical range of (π�)−1Π [47].

The Wigner representation is in general a bijective, linear mapping be-
tween the set of density operators (or, more generally, the trace-class opera-
tors) and the phase-space distribution functions Wρ that satisfy the so-called
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Stratonovich postulates [21,113]:

Postulate (i): ρ �→ Wρ is linear and injective,

Postulate (ii): Wρ† = W ∗
ρ (reality),

Postulate (iiia): Tr(ρ) =
∫

Wρ dΩ (normalization),

Postulate (iiib): Tr(A†ρ) =
∫

a∗ Wρ dΩ (traciality),

Postulate (iv): WD(Ω′)ρ(Ω) = Wρ(Ω−Ω′) (covariance).

The not necessarily bounded10 operator A is the Weyl quantization of the
phase-space function (or distribution) a(Ω) ∈ S ′(R2), refer to Sect. 4.3. Based
on these postulates, the Wigner function was defined for phase-spaces of quan-
tum systems with different dynamical symmetry groups via coherent states
[21,54,79,81,100,115].

Before finally presenting the definition of the Cohen class for density
operators following [44, Sec. 8.1., Def. 93] or [29], let us first recall the con-
cept of convolutions. Given Schwartz functions a, φ ∈ S(R2), one defines their
convolution via

φ ∗ a := 2π� Fσ[(Fσφ) (Fσa)] (18)
which is again in S(R2). In principle, this formula extends to general func-
tions, although convergence may become an issue. These extensions are used
in Theorem 1 as well as Sect. 4.3. Now, Eq. (18) as well as the fact that

(φ ∗ a)(Ω) =
∫

φ(Ω′)a(Ω−Ω′) dΩ′ = 〈φ∗, [T (Ω)a]∨〉

are, for example, shown in [101, Thm. IX.3], where a∨(Ω) := a(−Ω) and T (Ω)
is the operator which translates a function by Ω [i.e., T (Ω)a(Ω′) := a(Ω′−Ω)].
With this in mind, one arrives at an extension of the convolution to tempered
distributions [62, Eq. (4.37) ff.]: Given θ ∈ S ′(R2), a ∈ S(R2) set

(θ ∗ a)(Ω) := θ
(
[T (Ω)a]∨

)
(19)

for all Ω ∈ R
2. This definition extends in a natural way to general linear

functionals θ : Dθ → C on some subspace Dθ ⊆ (R2 → C), and general
functions a : R

2 → C as long as [T (Ω)a]∨ ∈ Dθ for all Ω ∈ R
2.

Defining the convolution via Eq. (19) is consistent with the distributional
pairing in the sense that 〈φ∗| ∗ a ≡ φ ∗ a, if 〈φ∗|(ψ) := 〈φ∗, ψ〉 on S(R2).
Moreover, one readily verifies the identity 〈(θ ∗ a)∗, ψ〉 = θ(a∨ ∗ ψ) for all θ ∈
S ′(R2), a, ψ ∈ S(R2). This shows that Eq. (19) is equivalent to other extensions
of convolutions commonly found in the literature, e.g., [101, p. 324]. Be aware
that θ ∗ a is always a function of slow growth, that is, 〈(θ ∗ a)∗, ·〉 ∈ S ′(R2) for
all θ ∈ S ′(R2), a ∈ S(R2) [101, Thm. IX.4].

10For unbounded operators A, Postulate (iiib) still makes sense if ρ is has a finite repre-

sentation in the number-state basis, that is, ρ =
∑N

m,n=1〈m|ρn〉|m〉〈n| for some N ∈ N0.

Then, this postulate gets replaced by the well-defined expression
∑N

m,n=0〈mρ|n〉〈m|An〉∗ =∫
a∗ Wρ dΩ, see also “Appendix C.”
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Definition 2. The Cohen class is the set of all linear mappings from density
operators to phase-space distributions that are related to the Wigner function
via a convolution. More precisely, a linear map F : B1(L2(R)) → (R2 → C),
ρ �→ Fρ maps to the phase-space distributions if 〈Fρ, · 〉 ∈ S ′(R2) for all ρ ∈
B1(L2(R)). Then, F belongs to the Cohen class if there exists11 θ ∈ S ′(R2)
(called “Cohen kernel”) such that

Fρ(Ω) = [θ ∗ Wρ](Ω).

This is a generalization of the definition commonly found in the literature
[44, Def. 93]: There one restricts the domain of F from the full trace class to
only rank-one operators ρ = |φ〉〈ψ| for some φ, ψ ∈ L2(R) or even ∈ S(R). As
a simple example [44, p. 90], the Wigner function is in the Cohen class: To
see this, choose θ = δ in the above definition: [δ ∗ Wρ](Ω) = δ([T (Ω)Wρ]∨) =
Wρ(Ω).

Remark 2. Given some θ ∈ S ′(R2) associated with an element F of the Cohen
class, one formally obtains Fσ[Fρ] = Fσ[θ ∗ Wρ] = KθFσ[Wρ] if the symplec-
tic Fourier transform of θ is generated by a function Kθ : R

2 → C via the
usual distributional pairing (we will call this “admissible” later, cf. Sect. 4.1).
The reason we make this observation is that this object always exists: It is
a product of two classical functions where Fσ[Wρ] is a bounded and square-
integrable function, i.e., |Fσ[Wρ](Ω)| = |Tr[D(Ω)ρ]| ≤ ‖D(Ω)‖sup‖ρ‖1 = 1 due
to unitarity of D(Ω), and Wρ ∈ L2(R2) [44, Proposition 68] so the same holds
true for its Fourier transform. Thus—while the expression θ ∗ Wρ may be ill
defined for certain θ ∈ S ′(R2), ρ ∈ B1(L2(R))—going to the Fourier domain
yields a well-defined object which can be studied rather easily.

4. Theory of Parity Operators and Their Relation to
Quantization

4.1. Phase-Space Distribution Functions via Parity Operators

We propose a definition for phase-space distributions and the Cohen class
based on parity operators, the explicit form of which will be calculated in
Sect. 4.4. A similar form has already appeared in quantum optics for the so-
called s-parametrized distribution functions, see, e.g., [22,98]. In particular,
an explicit form of a parity operator that requires no integral transformation
appeared in (6.22) of [23], including its eigenvalue decomposition which was
later re-derived in the context of measurement probabilities in [98], refer also
to [91,102]. Apart from those results, mappings between density operators and
their phase-space distribution functions have been established only in terms
of integral transformations of expectation values, as in [3,4,22].

11More precisely, θ has to be a linear functional on a subspace Dθ of R
2 → C such that

[T (Ω)Wρ]∨ ∈ Dθ for all ρ ∈ B1(L2(R)), Ω ∈ R
2. However, we will keep things informal

by assuming henceforth that all convolutions we encounter are well defined in the sense of
Eq. (19).



4186 B. Koczor et al. Ann. Henri Poincaré

For a convolution kernel θ ∈ S′(R2), we introduce the corresponding filter
kernel

Kθ := 2π� Fσ(θ) (20)
where Fσ denotes the symplectic Fourier transform (see Sect. 2.1). Henceforth,
we say θ ∈ S ′(R2) is admissible if its filter kernel is generated by a function
via the usual integral form of the distributional pairing 〈φ, ψ〉 = φ(ψ) ∈ C for
φ ∈ S ′(R) and ψ ∈ S(R) (see Sect. 2.1): More precisely, θ is admissible if there
exists a function Kθ from R

2 to C such that 2π� Fσ(θ)(ψ) = 〈K∗
θ , ψ〉 for all

ψ ∈ S(R). In this case, we call Kθ the filter function associated with θ.
Most importantly, if the convolution kernel is admissible and itself is

generated by a function, i.e., if we consider 〈θ∗, · 〉 ∈ S′(R2) admissible, then
Eq. (20) simplifies to

Kθ(Ω) = 2π� [Fσθ∨](Ω) = 2π� [Fσθ](−Ω) (21)

for all Ω ∈ R
2. As before θ∨(Ω) = θ(−Ω). The technical condition of θ being

admissible is always satisfied in practice (cf. Tables 2 and 3). The advantage of
only considering admissible kernels is that the definition of the (generalized)
parity operator makes for an obvious generalization of the parity operator
from Sect. 3.2. For an even more general definition, we refer to Remark 12 in
“Appendix A.”

Definition 3. Given any admissible convolution kernel θ ∈ S′(R2) with associ-
ated filter function Kθ, we define a parity operator Πθ on S(R) via

Πθ := (4π�)−1

∫
Kθ(Ω)D(Ω) dΩ, (22)

that is, [Πθψ](x) := (4π�)−1
∫

Kθ(Ω)[D(Ω)ψ](x) dΩ for all ψ ∈ S(R), x ∈ R.
This extends to a parity operator on the tempered distributions 〈Πθ| : Dθ →
S ′(R) via

〈Πθ| := (4π�)−1

∫
K∗

θ (Ω)D†(Ω) dΩ (23)

(where the notation 〈Πθ| is replaced below with Πθ) with domain

Dθ := {φ ∈ S ′(R) s.t.
∫

K∗
θ (Ω)φ[D(−Ω)(·)] dΩ ∈ S ′(R)}. (24)

We remark that the operator (22) has already appeared in Eq. (33) of [12]
for the special case Kθ(0) = 1. The latter, however, does not avoid potential
domain problems, cf. Example 2.

The derivation of the extension (23) of Πθ to tempered distributions is
detailed in “Appendix A.” Displacements of tempered distributions φ ∈ S ′(R)
are understood via the distributional pairing 〈D(Ω)φ, ψ〉 = 〈φ,D†(Ω)ψ〉 and
(23) gives rise to a well-defined linear operator 〈Πθ| from Dθ to S ′(R) acting
on ψ ∈ S(R) via

(〈Πθ|φ)(ψ) = (4π�)−1

∫
K∗

θ (Ω)〈φ, e− i
�

(p0x+
1
2p0x0)ψ(x+x0)〉dΩ. (25)

The definition of Πθ is independent of the object it acts on (see “Ap-
pendix A”): 〈Πθ|〈φ, · 〉 = 〈Πθφ, · 〉 for all φ ∈ S(R) where 〈φ, · 〉 denotes the
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functional ψ �→ 〈φ, ψ〉 ∈ S ′(R). All filter functions used in practice (refer to
Tables 2 and 3) obey K∗

θ (x0, p0) = Kθ(x0,−p0) for all x0, p0 ∈ R. In this case,
〈Πθ| is not only compatible with the inner product on L2(R), but also with
the embedding S(R) ↪→ S ′(R) usually employed in mathematical physics (see
Lemma 3 in “Appendix A”). This motivates us to henceforth write Πθ in the
case of both (22) and (23) (instead of 〈Πθ|).

While our definition above is pleasantly intuitive, we have to explicitly
consider the domain of the parity operator. For a general (admissible) kernel θ,
one needs to restrict the domain Dθ ⊆ S ′(R) of Πθ to tempered distributions
for which the integral in Eq. (22) exists, as done in Eq. (24) and already hinted
at in Remark 1.

Example 2. Domain considerations are illustrated using the standard ordering
with Kθ(Ω0) = exp[ip0x0/(2�)] (see Table 2). Given any φ, ψ ∈ S(R), we have

〈φ,Πθψ〉 = (Πθ〈ψ, ·〉)(φ)∗ = (4π�)−1

∫∫∫
φ∗(x+x0)e

i
�

p0(x+x0)ψ(x) dx0 dx dp0

= (8π�)−1/2
(∫

[Fφ](p0) dp0

)∗(∫
ψ(x) dx

)

=
√

π�

2 F [Fφ]∗(p̃)
∣∣
p̃=0

[Fψ](x̃)
∣∣
x̃=0

=
√

π�

2 φ∗(0)[Fψ](0). (26)

This reproduces known properties as in Eq. (5.39) of [30] (cf. Remark 3);
however, we emphasize that, although Eq. (26) exists for all functions φ, ψ as
long as [Fψ](0) exists, this expression is only equal to 〈φ,Πθψ〉 if in addition
φ and Fφ are both in L1 (else the Fourier inversion formula used in the last
step cannot be applied). In other words, a function φ : R → R is in the domain
Dθ of Πθ if and only if its Fourier transform exists and is in L1(R) if and
only if (26) (resp. Eq. (5.39) of [30]) equals 〈φ,Πθψ〉 for all suitable ψ. In
particular, Dθ contains all Schwartz functions confirming that Πθ is densely
defined. However, the functional 〈φ, · 〉 ∈ S ′(R) fails to be in Dθ for most
functions φ : R → C of slow growth including nonzero constant ones such as
φ := 1 ∈ S ′(R). In particular, Πθ does not extend to a well-defined operator
on L2(R) as not all square-integrable functions will be contained in Dθ.

Following this line of thought, we investigate the well-definedness and
boundedness of Πθ on the Hilbert space L2(R). As in Example 2, we observe
that S(R) ⊆ Dθ for all filter functions Kθ which is particularly relevant for ap-
plications. This follows by interpreting Πθ as a Weyl quantization (cf. Sect. 4.3)
whereby θ �→ Πθ is specified as a map from S ′(R2) to the linear maps between
S(R) and S ′(R) (cf. Chapter 6.3 in [43] or Lemma 14.3.1 in [62]). Consequently,
every parity operator has a well-defined matrix representation in the number-
state basis (which is a subset of S(R), cf. Sect. 2.2). The following stronger
statement is shown in “Appendix B.1”:

Lemma 2. Given any convolution kernel θ ∈ S ′(R2), the following are equiva-
lent:
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(i,a) Πθ : L2(R) → L2(R) is a well-defined linear operator, that is, the mapping
x �→ 1

2θ(Fσ[Dψ(x)]) (cf. Remark 12, “Appendix A”) is in L2(R) for all ψ ∈
L2(R).
(i,b) [θ ∗ Wψ](0, 0) exists for all ψ ∈ L2(R), i.e., [θ ∗ Wψ](0, 0) < ∞.

Also, the following statements are equivalent:
(ii,a) supψ,φ∈L2(R),‖ψ‖=‖φ‖=1 |[θ ∗ Wφ,ψ](0, 0)| < ∞.
(ii,b) (φ, ψ) �→ θ ∗ Wφ,ψ is weakly continuous on L2(R) in the sense that there
exists C > 0 such that |[θ ∗ Wφ,ψ](0, 0)| ≤ C‖φ‖‖ψ‖ for all φ, ψ ∈ L2(R).
(ii,c) Πθ ∈ B(L2(R)).
Moreover, if θ is admissible, then (i,a), (i,b) and (ii,a), (ii,b), (ii,c) are all
equivalent.

Recall from Sect. 3.3, Wφ,ψ is the usual cross-Wigner transform given by

Wφ,ψ(x, p) = (π�)−1〈ψ,D(x, p)ΠD†(x, p)φ〉

= (2π�)−1

∫ ∞

−∞
e− i

�
pyψ∗(x−y

2 )φ(x+y
2 ) dy.

Let us highlight that condition (ii,b) in Lemma 2 is a known sufficient condition
from time–frequency analysis to ensure that a tempered distribution θ is an
element of the Cohen class, cf. Theorem 4.5.1 in [62]. Now, the almost magical
result of Lemma 2 is that Πθ being well defined on L2(R) automatically implies
boundedness as long as θ is admissible. This can also be attributed to the
folklore that unbounded operators “cannot be written down explicitly”: As
the operator Πθ for admissible kernels is defined via an explicit integral, one
gets the boundedness of Πθ “for free.” Indeed, the proof that all five statements
from the above lemma are equivalent breaks down if one considers not only
admissible but arbitrary kernels.

We define a general class of phase-space distribution functions Fρ(Ω, θ)
via the (formal) expression (π�)−1 Tr [ ρD(Ω)ΠθD†(Ω)]. For general θ, how-
ever, this only makes sense if all displaced quantum states D†(Ω)ρD(Ω) are
supported on Dθ. We avoid these technicalities by restricting the definition
to those filter functions which give rise to operators Πθ that are bounded on
L2(R) and thereby allow for general ρ.

Definition 4. Given any θ ∈ S ′(R2) such that Πθ ∈ B(L2(R)), we define a
linear mapping Fρ(·, θ) on the density operators ρ ∈ B1(L2(R)) in the form of
the quantum-mechanical expectation value

Fρ(Ω, θ) := (π�)−1 Tr [ ρD(Ω)ΠθD†(Ω)]. (27)

While our definition considers the practically most important case of
bounded parity operators, in “Appendix C,” we give a detailed account of the
extension of Fρ(Ω, θ) to arbitrary θ ∈ S ′(R2) whereby the associated parity
operators may be unbounded. This is of importance for, e.g., the standard and
antistandard orderings as shown in Example 2. The prototypical case where
these extensions may not apply due to θ /∈ S ′(R2) is the case of the Glauber P
function which is well known to be singular except for classical thermal states.
However, most other convolution kernels appearing in practice are induced by
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a tempered distribution and thus fit into the framework of either Definition 4
or its extension in “Appendix C.”

Either way Definition 4 has many conceptual and computational advan-
tages as we have detailed in the introduction. To further clarify the scope of
said definition we now—similar to the proof of Lemma 2—relate the distribu-
tion functions Fρ(Ω, θ) from Eq. (27) to the Cohen class (see Definition 2 and
[44, Ch. 8]) by considering the filter function associated with any admissible
kernel.

Theorem 1. Given any θ ∈ S′(R2) such that Πθ ∈ B(L2(R)), the corresponding
phase-space distribution function Fρ(Ω, θ) ∈ S ′(R2) as defined in Eq. (27) is
an element of the Cohen class. In particular, Fρ(Ω, θ) is related to the Wigner
function Wρ(Ω) via the convolution

Fρ(Ω, θ) = [θ ∗ Wρ](Ω). (28)

If the convolution kernel θ ∈ S ′(R2) is additionally admissible—meaning it
is the reflected symplectic Fourier transform θ = (2π�)−1〈FσK∗

θ | of its filter
function Kθ—then in analogy to (16) one finds

D(Ω)ΠθD†(Ω) = 1
2Fσ[Kθ(·)D(·)](−Ω). (29)

The proof of Theorem 1 is given in “Appendix B.2.” The construction of a
particular class of phase-space distribution functions was detailed in [4], where
the term “filter function” also appeared in the context of mapping operators.
However, these filter functions were restricted to nonzero, analytic functions.
Definition 4 extends these cases to the Cohen class via Theorem 1 which allows
for more general phase spaces. For example, the filter function of the Born–
Jordan distribution has zeros (see Theorem 3), and is therefore not covered by
[4]. Most of the well-known distribution functions are elements of the Cohen
class. We calculate important special cases in Sect. 4.4. The Born–Jordan
distribution and its parity operator are detailed in Sect. 5.

Our approach to define phase-space distribution functions using displaced
parity operators also nicely fits with the characteristic [22,29,88] or ambiguity
[44, Sec. 7.1.2, Prop. 5] function χ(Ω) ∈ L2(R2) of a quantum state that is
defined as the expectation value χ(Ω) := Tr[ρD(Ω)] = [FσWρ](Ω) or, equiv-
alently, as the symplectic Fourier transform of the Wigner function Wρ(Ω).
By multiplying the characteristic function χ(Ω) with a suitable filter function
Kθ(Ω) and applying the symplectic Fourier transform, one obtains the Cohen
class of phase-space distribution functions.

Remark 3. Definitions 3 and 4 for the parity operator and the phase-space
function can be compared to prior work where special cases or similar parity
operators have implicitly appeared and where similar restrictions on their exis-
tence must be observed. For example, the integral definition [28] of phase-space
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functions

F|φ〉〈φ|(x, p, θ)

= (4π2
�

2)−1

∫∫∫
φ∗(x′−y

2 )φ(x′+y
2 )Kθ(−y, p′)e− i

�
(xp′+yp−x′p′) dx′ dy dp′

(30)

= (π�)−1〈φ,D(x, p)ΠθD†(x, p)φ〉. (31)

as given12 in Eq. (5.2) of [30] translates into the definition (31) with the par-
ity operator. Both Eqs. (30) and (31) need to respect domain restrictions as
discussed in Example 2 and neither equation is well defined for tempered distri-
butions in S′(R) or square-integrable functions in L2(R) that are not contained
in the domain Dθ.

4.2. Common Properties of Phase-Space Distribution Functions

We now detail important properties of Fρ(Ω, θ) and their relation to prop-
erties of Kθ(Ω) and Πθ. These properties will guide our discussion of parity
operators and this allows us to compare the Born–Jordan distribution to other
phase spaces. Table 1 provides a summary of these properties, and the proofs
are deferred to “Appendix D.” Recall that we are dealing exclusively with
convolution kernels θ ∈ S ′(R2) which give rise to bounded operators Πθ so the
induced phase-space distribution Fρ(Ω, θ) is well defined everywhere.

Property 1. Boundedness of phase-space functions Fρ(Ω, θ): The phase-space
distribution function Fρ(Ω, θ) is bounded in its absolute value,
i.e., π� |Fρ(Ω, θ)| ≤ ‖Πθ‖sup for all quantum states ρ, refer to Lemma 1. In par-
ticular, then Fρ(Ω, θ) ∈ S ′(R2). Moreover, one finds that square-integrable fil-
ter functions give rise to bounded parity operators due to ‖Πθ‖sup

≤ ‖Kθ‖L2/
√

8π�. The proof of Property 1 in “Appendix D” implies the even
stronger statement that Πθ is a Hilbert–Schmidt operator if and only if Kθ is
square integrable.

Property 2. Square integrability: The phase-space distribution function
Fρ(Ω, θ) is square integrable [i.e., Fρ(Ω, θ) ∈ L2(R2)] for all ρ ∈ B1(L2(R))
if the absolute value of the filter function is bounded [i.e., Kθ(Ω) ∈ L∞(R2)].
In particular, this implies Fρ(Ω, θ) ∈ S ′(R2).

Property 3. Postulate (iv): The phase-space distribution function Fρ(Ω, θ) sat-
isfies, by definition, the covariance property. In particular, a displaced density
operator ρ′ := D(Ω′)ρD†(Ω′) is mapped to the inversely displaced distribution
function Fρ′(Ω, θ) = Fρ(Ω−Ω′, θ).

Property 4. Rotational covariance: Let us denote a rotated density operator
ρφ = UφρU†

φ, where the phase-space rotation operator is given by Uφ :=
exp (−iφâ†â) in terms of creation and annihilation operators. The phase-space

12The filter function in [30] agrees with our Kθ(−y, p′) up to substituting −y with y and
switching arguments, which is usually immaterial as Kθ(−y, p′) = Kθ(p′, y) for all filter
functions seen in practice.
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Table 1. Properties of phase-space distribution functions
from Definition 4

Property of Fρ(Ω, θ) Description Requirement

Boundedness |Fρ(Ω, θ)| is
bounded

‖Πθ‖sup is
bounded

Square integrability Fρ(Ω, θ) ∈ L2(R2) |Kθ(Ω)| is bounded
Linearity ρ �→ Fρ(Ω, θ) is linear By definition
Covariance D(Ω′)ρD†(Ω′) �→

Fρ(Ω−Ω′, θ)
By definition

Rotations Covariance under
rotations

Kθ is invariant under
rotations

Reality ρ† �→ F ∗
ρ (Ω, θ) Symmetry K∗

θ (−Ω) =
Kθ(Ω)

Traciality Tr [ρ] �→
∫

Fρ(Ω, θ) dΩ [Kθ(Ω)]|Ω=0 = 1
Marginal condition |ψ(x)|2 and |ψ(p)|2 are

recovered
[Kθ(x, p)]|p=0

= [Kθ(x, p)]|x=0 = 1

distribution function is covariant under phase-space rotations,13 i.e., Fρφ(Ω, θ)
= Fρ(Ω−φ, θ), if the filter function Kθ(Ω) (or equivalently the parity operator
Πθ) is invariant under rotations. Here, Ω−φ is the inversely rotated phase-space
coordinate, e.g., α−φ = exp (iφ)α. As a consequence of this symmetry, the cor-
responding parity operators are diagonal in the number-state representation,
i.e., 〈n|Πθ|m〉 ∝ δnm.

Property 5. Postulate (ii): The phase-space distribution function Fρ(Ω, θ) is
real if Πθ is self-adjoint. This condition translates to the symmetry K∗

θ (−Ω) =
Kθ(Ω) of the filter function.

Property 6. Postulate (iiia): The trace of a trace-class operator Tr [ρ] is mapped
to the phase-space integral

∫
Fρ(Ω, θ) dΩ if the corresponding filter function

satisfies Kθ(0) = 1. Note that this property also implies that the trace exists,
i.e., Tr(Πθ) = Kθ(0)/2, in some particular basis, even though Πθ might not be
of trace class.

Property 7. Marginals: An even more restrictive subclass of the Cohen class
satisfies the marginal properties

∫
F|ψ〉〈ψ|(x, p, θ) dx = |ψ(p)|2 and∫

F|ψ〉〈ψ|(x, p, θ) dp = |ψ(x)|2 if and only if [Kθ(x, p)]|p=0 = 1 and
[Kθ(x, p)]|x=0 = 1. This follows, e.g., directly from Proposition 14 in Sec. 7.2.2
of [43].

4.3. Relation to Quantization

The Weyl quantization of a tempered distribution a ∈ S ′(R2) is obtained
from the Grossmann–Royer operator in Eq. (16) (cf. [43, Sec. 6.3., Def. 7 and

13Note that any physically motivated distribution function must be covariant under π/2
rotations in phase-space, which corresponds to the Fourier transform of pure states and
connects coordinate representations ψ(x) to momentum representations ψ(p).
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Prop. 9]), i.e.,
OpWeyl(a) = (π�)−1a(DΠD†). (32)

More precisely, OpWeyl(a) : S(R) → S ′(R) is the well-defined linear map

[OpWeyl(a)ψ](x) = (π�)−1a[(DΠD†ψ)(x)] (33)

for all ψ ∈ S(R), x ∈ R, where the argument of a is the Schwartz function
Ω �→ (D(Ω)ΠD†(Ω)ψ)(x) on R

2 [43, Sec. 6.3., Prop. 13]. If a is generated by a
phase-space function a : R

2 → C, i.e., a ≡ 〈a∗, ·〉, then

OpWeyl(a) = (π�)−1

∫
a(Ω)D(Ω)ΠD†(Ω) dΩ = (2π�)−1

∫
aσ(Ω)D(Ω) dΩ,

(34)
where the symplectic Fourier transform aσ(Ω) = [Fσa(·)](Ω) is used for the
second equality. Thus, OpWeyl is similar to the generalized parity operator in
the sense that it maps a function (or tempered distribution) to a linear operator
which acts on real-valued functions. This is not by chance as these two objects
are very much related to each other: recall that quantizations associated with
the Cohen class Opθ(a) are essentially Weyl quantizations of convolved phase-
space functions up to coordinate reflection, i.e., Opθ(a) := OpWeyl(θ∨ ∗ a)
where θ∨(ψ) := θ(ψ∨) for all ψ ∈ S(R2). If θ is an admissible kernel in the
sense of Sect. 4.1, then formally

Opθ(a) = (π�)−1

∫
(θ∨ ∗ a)(Ω)D(Ω)ΠD†(Ω) dΩ (35)

= (2π�)−1

∫
aσ(Ω)Kθ(Ω)D(Ω) dΩ, (36)

cf. [43, Sec. 7.2.4, Prop. 17]. The symplectic Fourier transform [Fσ(θ∨∗a)](Ω) =
aσ(Ω)Kθ(Ω) (as functionals on S(R2) so in particular 〈θ∨∗a, ·〉 ∈ S ′(R2)) from
Theorem 1 is used for the second equality, refer to §7.2.4 in [43].

Proposition 1. Let θ, a ∈ S ′(R2) be given such that θ is admissible and the
parity operator Πθ from Definition 3 is in B(L2(R)). If a is generated by a
phase-space function a : R

2 → C (i.e., a ≡ 〈a∗, ·〉) and if 〈θ∨ ∗ a, ·〉 ∈ S ′(R2),
then

Opθ(a) = (π�)−1

∫
a(Ω)D(Ω)ΠθD†(Ω) dΩ

in analogy to (34) as quadratic forms on S(R).

Proof. The Plancherel formula
∫

a(Ω)b(Ω) dΩ =
∫

aσ(Ω)bσ(−Ω)dΩ implies
that

Opθ(a) = (2π�)−1

∫
aσ(Ω)Kθ(Ω)D(Ω) dΩ

= (2π�)−1

∫
Fσ[aσ(·)](Ω)Fσ[Kθ(·)D(·)](−Ω)dΩ,

where the equality D(Ω)ΠθD†(Ω) = 1
2Fσ[K(·)D(·)](−Ω) follows from (29)

(Theorem 1) and Fσ[aσ(·)](Ω) = a(Ω) is applied. �
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This result motivates the following extension of Eq. (32), special cases of
which have already appeared in [12, Eq. (36)] as well as [55, (3.24)]:

Definition 5. The quantization Opθ(a) of any a ∈ S ′(R2) is defined to be

Opθ(a) = (π�)−1a(DΠθD†)

in the sense of Eq. (33).

One can consider single Fourier components ei(p0x−x0p)/� =: fΩ0(Ω), for
which the Weyl quantization yields the displacement operator OpWeyl(fΩ0) =
D(Ω0) from Sect. 3.1, refer to Proposition 51 in [44] or Proposition 11 in
Sec. 6.3.2 of [43]. Let us now consider the θ-type quantization of a single Fourier
component, which results in the displacement operator being multiplied by the
corresponding filter function via (35)–(36). Substituting aσ(Ω) = Fσ[fΩ0 ](Ω)
into (35), one obtains

Opθ(fΩ0) = Kθ(Ω0)D(Ω0) and Πθ = (4π�)−1

∫
Opθ(fΩ0) dΩ0.

The second equality follows from (22), and it specifies the parity operator as
a phase-space average of quantizations of single Fourier components.

But it is even more instructive to consider the case of the delta distribu-
tion δ(2), the Weyl quantization of which yields the Grossmann–Royer parity
operator OpWeyl(δ(2)) = π� Π (as obtained in [64]). Applying (35), the Cohen
quantization of the delta distribution yields the parity operator from (22). In
particular, the operator Πθ from Definition 3 is a θ-type quantization of the
delta distribution as

Πθ = (π�)−1 Opθ(δ
(2)) = (π�)−1 OpWeyl(θ

∨), (37)

or equivalently, the Weyl quantization of the Cohen kernel, up to coordinate
reflection. Since Πθ is the Weyl quantization of the tempered distribution θ∨ ∈
S ′(R2), one can adapt results contained in [38] to precisely state conditions on
θ, for which bounded operators Πθ are obtained via their Weyl quantizations,
refer also to Property 1. For example, square-integrable θ ∈ L2(R2) result
in Hilbert–Schmidt operators Πθ, absolutely integrable θ ∈ L1(R2) result in
compact operators Πθ, and Schwartz functions θ ∈ S(R2) result in trace-class
operators Πθ, refer to [38].

We consider now a class of explicit quantization schemes along the lines of
[3,22,23,43] which are motivated by different (τ, s)-orderings of non-commuting
operators x̂ and p̂ or â and â† (−1 ≤ s ≤ 1 and 0 ≤ τ ≤ 1). This class is
obtained via the (τ, s)-parametrized filter function (where the relation α =
(λx + ip/λ)/

√
2� from Sect. 3.1 is used)

Kτs(Ω) := exp [2τ−1
4 (α2−(α∗)2) + s

2 |α|2] = exp [ i(2τ−1)px
2�

+ s(λ2x2+λ−2p2)
4�

],

(38)

which admits the symmetries Kτs(Ω) = Kτs(−Ω) and K∗
τs(x, p) = Kτs(x,−p).

The corresponding (τ, s)-parametrized quantizations of a single Fourier compo-
nent are given by the operators Opτs(fΩ0) := Kτs(Ω)D(Ω), which are central



4194 B. Koczor et al. Ann. Henri Poincaré

Table 2. Common operator orderings, their defining filter
functions Kτs(Ω0), and the corresponding single Fourier com-
ponent quantizations Opτs(fΩ0) as displacement operators
with ei(p0x−x0p)/� =: fΩ0(Ω), refer to, e.g., [3,4,22,43,102].
Coordinates Ω0 � α0 � (x0, p0) with subindex 0 are used for
clarity

Ordering (τ, s) Kτs(Ω0) Opτs(fΩ0 )

Normal ( 1
2
, 1) e|α0|2/2 eα0â†

e−α∗
0 â

Antinormal ( 1
2
, −1) e−|α0|2/2 e−α∗

0 âeα0â†

Weyl ( 1
2
, 0) 1 eα0â†−α∗

0 â = e
i
�

p0x̂− i
�

x0p̂

Standard (1, 0) e
i

2�
p0x0 e

i
�

p0x̂e− i
�

x0p̂

Antistandard (0, 0) e
− i

2�
p0x0 e

− i
�

x0p̂
e

i
�

p0x̂

Born–Jordan
∫ 1
0 (τ, 0) dτ sinc(p0x0/2) Refer to Sect. 5

in ordered expansions into non-commuting operators. Also, note that for s ≤ 0,
the resulting parity operators are bounded as is readily verified; hence, the cor-
responding distribution functions are in the Cohen class with Kτs(Ω) ∈ S ′(R2)
due to Theorem 1. Important, well-known special cases are summarized in Ta-
ble 2, refer also to [3,4,22,43].

4.4. Explicit Form of Parity Operators

Expectation values of displaced parity operators

Πτs = (4π�)−1

∫
Kτs(Ω)D(Ω) dΩ = (4π�)−1

∫
Opτs(fΩ0) dΩ (39)

are obtained via the kernel function in (38) and recover well-known phase-space
distribution functions14 for particular cases of τ or s, which are motivated
by the ordering schemes Opτs(fΩ0) from Table 2. Important special cases of
these distribution functions and their corresponding filter functions and Cohen
kernels are summarized in Table 3.

In particular, the parameters τ = 1/2 and s = 0 identify the Wigner
function with K1/2,0(Ω) ≡ 1 and (39) reduces to (15). Note that the corre-
sponding Cohen kernel θ from Theorem 1 is the two-dimensional delta dis-
tribution δ(2)(Ω) and that convolving with δ(2)(Ω) is the identity operation,
i.e., δ(2) ∗ Wρ = Wρ [see (28)].

The filter function Kτs from (38) for a fixed parameter of τ = 1/2 results
in the Gaussian Ks(Ω) := K1/2,s(Ω) = exp [ s

2 |α|2]. The corresponding parity
operators are diagonal in the number-state representation (refer to Property 4),
and they can be specified for −1 ≤ s < 1 in terms of number-state projectors

14This family of phase-space representations is related to the one considered in [3,4] by
setting λ = s/2 and μ = −ν = 2τ − 1/4.



Vol. 24 (2023) Phase Spaces, Parity Operators 4195

Table 3. Well-known phase-space distribution functions and
their corresponding Cohen kernels recovered for particular val-
ues of τ or s via expectation values of displaced parity oper-
ators from (39)

Name (τ, s) Kτs(Ω) θτs(Ω)

Wigner function (1/2, 0) 1 δ(2)(Ω)

s-parametrized (1/2, s) exp [ s
2
|α|2] − 1

πs
exp [ 2

s
|α|2]

Husimi Q func-
tion

(1/2, −1) exp [− 1
2
|α|2] 1

π
exp [−2|α|2]

Glauber P func-
tion

(1/2, 1) exp [ 1
2
|α|2] − 1

π
exp [2|α|2]

Shubin’s
τ -distribution

(τ, 0) exp [ i
�

2τ−1
2

px] 1
�π|2τ−1| exp [ 2i

�(2τ−1)
px]

Born–Jordan
distribution

∫ 1
0 (τ, 0) dτ sinc[px/(2�)] Fσ{sinc[px/(2�)]}/(2π�)

[22,98,102] as

Πs := Π1/2,s = (4π�)−1

∫
es|α|2/2 D(Ω) dΩ =

∞∑

n=0

(−1)n (1+s)n

(1−s)n+1
|n〉〈n|,

(40)
where the second equality specifies Πs in the form of a spectral decomposition.
We further discuss the representation of Πs in terms of creation and annihila-
tion operators in Remark 9 (Sect. 5.3). This form has implicitly appeared in,
e.g., [22,98,102]. We provide a more concise proof in “Appendix E.” Equation
(40) readily implies ‖Πs‖sup = (1−s)−1 for s ≤ 0, and for s < 0 one even finds
that Πs are trace-class operators due to

‖Πs‖1 =
∞∑

n=0

(1+s)n

(1−s)n+1
=

1
(1−s) − (1+s)

= (2|s|)−1.

Note that for s > 0 the corresponding filter functions lie outside of our frame-
work as then Ks �∈ S ′(R2) due to its superexponential growth. While one can
still formally write down their distribution functions, one runs into convergence
problems resulting in singularities. However, their symplectic Fourier trans-
form always exists and it is related to the Wigner function via Ks(Ω)Fσ[Wρ](Ω)
by multiplying with the filter function Ks(Ω) (cf. Remark 2). This class of s-
parametrized phase-space representations has gained widespread applications
in quantum optics and beyond [32,60,94,111,125], and they correspond to
Gaussian convolved Wigner functions

Fρ(Ω, s) = F|0〉(Ω, s+1) ∗ Wρ(Ω),

for s < 0 such as the Husimi Q function for s = −1. Note that the Cohen kernel
θs via Theorem 1 corresponds to the vacuum state F|0〉(Ω, s+1) of a quantum
harmonic oscillator [22]. Gaussian deconvolutions of the Wigner function are
formally obtained for s > 0, which includes the Glauber P function for s =
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1 [22]. Due to the rotational symmetry of its filter function Ks(Ω), the s-
parametrized distribution functions are covariant under phase-space rotations,
refer to Property 4.

Another important special case is obtained for the fixed parameter s = 0
which results in Shubin’s τ -distribution, refer to [16–18,43]. Its filter function
from (38) reduces to the chirp function

Kτ0(Ω) =: Kτ (Ω) = exp [i(2τ−1)px/(2�)]

while relying on the parametrization with x and p. The resulting distribution
functions Fρ(Ω, τ) are in the Cohen class due to Theorem 1, and they are square
integrable following Property 2 as the absolute value of Kτ (Ω) is bounded. We
calculate the explicit action of the corresponding parity operator Πτ .

Theorem 2. The action of the τ -parametrized parity operator Πτ := Πτ0 on
some coordinate representation ψ(x) ∈ L2(R) is explicitly given for any τ �= 1
by

Πτψ(x) =
1

2|τ−1|ψ( τx
τ−1 ), (41)

which for the special case τ = 1/2 reduces (as expected) to the usual parity
operator Π. It follows that Πτ is bounded for every 0 < τ < 1 (or in general
for every real τ that is not equal to 0 or 1) and its operator norm is given by
‖Πτ‖sup = 1/

√
4(τ−τ2).

Proof. By (39), the parity operator Πτ acts on the coordinate representation
ψ(x) via

Πτψ(x) = (4π�)−1

∫
Kτ0(Ω)D(Ω)ψ(x) dΩ.

This integral can be evaluated using the explicit form of Kτ0(Ω) from (38),
and the action of D on coordinate representations ψ(x) from (11) yields
∫

Kτ0(Ω)D(Ω)ψ(x) dΩ =
∫

e
i

2�
(2τ−1)p0x0e

i
�

(p0x− 1
2p0x0)ψ(x−x0) dx0 dp0

=
∫ [∫

e
i
�

p0(x+(τ−1)x0) dp0

]
ψ(x−x0) dx0

=
1

|τ−1|

∫ [∫
e

i
�

p0y dp0

]
ψ( τx−y

τ−1 ) dy,

where the change of variables y = x + (τ−1)x0 with x0 = (y−x)/(τ−1) and
dy = |τ−1|dx0 was used. Therefore, the right-hand side is

2π�

|τ−1|

∫
δ(y)ψ( τx−y

τ−1 ) dy =
2π�

|τ−1|ψ( τx
τ−1 ).

Now, let τ ∈ (0, 1). Recalling that the operator norm ‖Πτ‖sup is calculated
via sup‖φ(x)‖L2=1‖Πτφ(x)‖L2 , for an arbitrary square-integrable φ(x) with L2
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norm ‖φ(x)‖L2 = 1 one obtains

‖Πτφ‖2
L2 = 〈Πτφ|Πτφ〉 = (2|τ−1|)−2

∫

R

φ∗( τx
τ−1 )φ( τx

τ−1 ) dx

= (2|τ−1|)−2 |τ−1|
|τ | ‖φ(x)‖L2 = 1

4|τ−1||τ | = 1
4(τ−τ2)

by applying a change of variables. This results in ‖Πτ‖sup =
[4(τ−τ2)]−1/2. �

This parity operator is bounded for every 0 < τ < 1, and its expectation
value gives rise to well-defined distribution functions (Property 1) which are
also integrable as Kτ (0) = 1 (Property 6). Note that this family of distribution
functions Fρ(Ω, τ, 0) for τ �= 1/2 does not satisfy Property 5, i.e., self-adjoint
operators ρ are mapped to complex functions. In particular, the symmetry
K∗

τ (Ω) = K1−τ (Ω) implies that

Fρ†(Ω, τ) = F ∗
ρ (Ω, 1−τ).

In the following, we will rely on this τ -parametrized family to construct and
analyze the parity operator of the Born–Jordan distribution.

5. The Born–Jordan Distribution

5.1. Parity Operator Description of the Born–Jordan Distribution

The Born–Jordan distribution Fρ(Ω,BJ) is an element of the Cohen class
[17,28,43] and is obtained by averaging over the τ -distributions Fρ(Ω, τ) ∈
L2(R2):

Fρ(Ω,BJ) :=
∫ 1

0

Fρ(Ω, τ) dτ. (42)

As in Definition 4, this distribution function is also obtained via the expecta-
tion value of a parity operator.

Theorem 3. The Born–Jordan distribution Fρ(Ω,BJ) of a density operator
ρ ∈ B1(L2(R)) is an element of the Cohen class, and it is obtained as the
expectation value

Fρ(Ω,BJ) = (π�)−1 Tr [ ρD(Ω)ΠBJD†(Ω)] (43)

of the (displaced) parity operator ΠBJ that is defined by the relation

ΠBJ := (4π�)−1

∫
KBJ(Ω)D(Ω) dΩ, (44)

where KBJ(Ω) = sinc(a) = sin(a)/a is the cardinal sine function with the
argument a = (2�)−1 px = i[(α∗)2−α2]/4. Here, one applies the substitution
α = (λx + ip/λ)/

√
2� from Sect. 3.1 and the expression for a is independent

of λ.
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Proof. Combining Eqs. (42) and (27), the Born–Jordan distribution is the
expectation value

Fρ(Ω,BJ) = (π�)−1 Tr [ ρD(Ω)(
∫ 1

0

Πτ0 dτ)D†(Ω)],

and the corresponding parity operator can be expanded as

ΠBJ = (4π�)−1

∫ [∫ 1

0

Kτ0(Ω) dτ

]
D(Ω) dΩ.

Using the explicit form of Kτ0(Ω) from (38), the evaluation of the integral
∫ 1

0

Kτ0(Ω) dτ =
∫ 1

0

exp [ i
2�

(2τ−1)px] dτ = sinc[(2�)−1 px]

over τ concludes the proof. �

This confirms that the Born–Jordan distribution Fρ(Ω,BJ) ∈ L2(R2) is
square integrable following Property 2 as the absolute value of its filter function
is bounded, i.e., |sinc[(2�)−1 px] | ≤ 1 for all (x, p) ∈ R

2. The filter function KBJ

satisfies KBJ(x, 0) = KBJ(0, p) = 1, and the Born–Jordan distribution there-
fore gives rise to the correct marginals as quantum-mechanical probabilities
(Property 7). In particular, integrating over the Born–Jordan distribution re-
produces the quantum-mechanical probability densities, i.e.,

∫
Fρ(x, p,BJ) dx =

|ψ(p)|2 and
∫

Fρ(x, p,BJ) dp = |ψ(x)|2.
Most importantly the operator ΠBJ is bounded, meaning Born–Jordan

distributions are well defined and bounded for all quantum states, refer to
Property 1. Also, the largest (generalized) eigenvalue of ΠBJ is exactly π/2 as
shown in Theorem 5.

Proposition 2. The Born–Jordan parity operator ΠBJ is bounded and an upper
bound of its operator norm is given by ‖ΠBJ‖sup ≤ π/2.

Proof. Using the Πτ -representation of ΠBJ, we compute

‖ΠBJψ(x)‖L2 =
∥∥
∫ 1

0

Πτψ(x) dτ
∥∥

L2 ≤
∫ 1

0

‖Πτψ(x)‖L2 dτ

≤
∫ 1

0

1√
4(τ−τ2)

dτ ‖ψ(x)‖L2 =
π

2
‖ψ(x)‖L2

for arbitrary ψ(x) ∈ L2(R). In the second-to-last step, we used Theorem 2.
�

It is well known that the Born–Jordan distribution is related to the
Wigner function via a convolution with the Cohen kernel θBJ, refer to [43,44].
However, calculating this kernel, or the corresponding parity operator directly
might prove difficult. In the following, we establish a more convenient repre-
sentation of the Born–Jordan parity operator which is an “average” of Πτ from
Theorem 2 via the formal integral transformation

ΠBJ =
∫ 1

0

Πτ dτ, (45)



Vol. 24 (2023) Phase Spaces, Parity Operators 4199

which—as in Sect. 3.2—is interpreted as ΠBJψ(x) =
∫ 1

0
Πτψ(x) dτ for all

ψ(x) ∈ L2(R). Recall that the parity operator Πτ is well defined and bounded
for every 0 < τ < 1.

Remark 4. Note that evaluating ΠBJψ(x) at x = 0 for some ψ(x) ∈ L2(R)
with ψ(0) �= 0 leads to a divergent integral in (45). This comes from the
singularity at τ = 1 in (41). However, we will later see that this is harmless
as it only happens on a set of measure zero (so one can define ΠBJψ(x)|x=0 to
be 0 or ψ(0) or arbitrary) and, more importantly, that ψ(x) ∈ L2(R) implies
ΠBJψ(x) ∈ L2(R) (Proposition 2).

Following [27] and Chapter 2.3 in [88], the squeezing operator is defined
to be

S(ξ) := exp[ iξ
2 (p̂x̂+x̂p̂)] = exp[ iξ

2 (â2−(â†)2)] (46)
(where ξ ∈ R), and it acts on a coordinate representation via S(ξ)ψ(x) =
eξ/2ψ(eξx).

Theorem 4. The Born–Jordan parity operator

ΠBJ = [ 1
4

∫ ∞

−∞
sech(ξ/2)S(ξ) dξ ] Π (47)

is a composition of the reflection operator Π followed by a squeezing opera-
tor (and the two operations commute), and this expression is integrated with
respect to a well-behaved weight function sech(ξ/2) = 2/(eξ/2+e−ξ/2). Note
that the function sech(ξ/2) ∈ S(R) is fast decreasing and invariant under the
Fourier transform (e.g., as Hermite polynomials).

Proof. The explicit action of ΠBJ on a coordinate representation ψ(x) ∈ L2(R)
is given by (see Theorem 2)

ΠBJψ(x) =
∫ 1

0

Πτψ(x) dτ =
∫ 1

0

1
2|τ−1|ψ( τx

τ−1 ) dτ.

Applying a change of variables eξ = τ/(1−τ) with ξ ∈ R yields the substitu-
tions τ = 1/(1+e−ξ), 1/(2|τ−1|) = (1+eξ)/2, and dτ = eξ/(1+eξ)2 dξ. One
obtains

ΠBJψ(x) =
∫ ∞

−∞

eξ

2(1+eξ)
ψ(−eξx) dξ.

Let us recognize that ψ(−eξx) = e−ξ/2S(ξ)Πψ(x) is the composition of a
coordinate reflection and a squeezing of the pure state ψ(x); also, the two
operations commute. This results in the explicit action

ΠBJψ(x) =
∫ ∞

−∞

eξ/2

2(1+eξ)
S(ξ)Πψ(x) dξ,

where eξ/2/[2(1+eξ)] = [2(e−ξ/2+eξ/2)]−1 concludes the proof. �

The expression for the parity operator in Theorem 4 is very instructive
when compared to Theorem 3, and this confirms that the parity operator
ΠBJ decomposes into the usual parity operator Π followed by a geometric
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transformation, refer also to Sect. 5.3. In the case of the Born–Jordan parity
operator this geometric transformation is an average of squeezing operators.

Remark 5. The Born–Jordan distribution is covariant under squeezing, which
means that the squeezed density operator ρ′ = S(ξ)ρS†(ξ) is mapped to the in-
versely squeezed phase-space representation Fρ′(x, p,BJ) = Fρ(e−ξx, eξp,BJ).

The form of ΠBJ given in (47) allows for an alternative proof of Proposi-
tion 2:

Remark 6. Recalling ‖ΠBJ‖sup = sup‖φ(x)‖L2=1 ‖ΠBJφ(x)‖L2 , the norm of the
function ΠBJφ(x) for any φ(x) with ‖φ(x)‖L2 = 1 can be expressed as

‖ΠBJφ(x)‖2
L2 = 〈φ|Π†

BJΠBJ|φ〉

= 1
16

∫∫
sech(ξ/2)sech(ξ′/2)〈φ|S(ξ′−ξ)|φ〉dξ dξ′

≤ 1
16

∫∫
sech(ξ/2)sech(ξ′/2)|〈φ|S(ξ′−ξ)|φ〉|dξ dξ′,

and it was used that Π†Π = Π2 = 1 and S†(ξ)S(ξ′) = S(ξ′−ξ). Since S(ξ′−ξ)
is unitary, one obtains that |〈φ|S(ξ′−ξ)φ〉| ≤ 1. Finally,

‖ΠBJφ‖2
L2 ≤ 1

16

∫∫
sech(ξ/2)sech(ξ′/2) dξ dξ′ = π2/4.

5.2. Spectral Decomposition of the Born–Jordan Parity Operator

We will now adapt results for generalized spectral decompositions, refer to
[26,27,57,95]. This will allow us to solve the generalized eigenvalue equation
for parity operators and to determine their spectral decompositions.

Recall the following from Sect. 2.1: The distributional pairing for smooth,
well-behaved functions ψ(x) ∈ S(R) in with respect to tempered distributions
a ∈ S ′(R) (such as functions of slow growth a(x)) extends to L2-scalar products
of the form 〈a, ψ〉 =

∫
R

a∗(x)ψ(x) dx, which corresponds to a rigged Hilbert
space [26,57] or the Gelfand triple S(R) ⊂ L2(R) ⊂ S ′(R). This rigged Hilbert
space allows us to specify the generalized spectral decomposition of the Born–
Jordan parity operator with generalized eigenvectors in S ′(R) as functions of
slow growth.

It was shown in the previous section that the Born–Jordan parity operator
ΠBJ is a composition of a coordinate reflection and a squeezing operator. We
now recapitulate results on the spectral decomposition of the squeezing opera-
tor from [19,26,27], up to minor modifications. Recall that the squeezing oper-
ator forms a unitary, strongly continuous one-parameter group S(ξ) = e−iξH

with ξ ∈ R that is generated by the (unbounded) self-adjoint Hamiltonian

H := − 1
2 (x̂p̂+p̂x̂) = − 1

2 [â2−(â†)2].

This Hamiltonian admits a purely continuous spectrum E ∈ R and satisfies
generalized eigenvalue equations

〈Hψ|ψE
±〉 = 〈ψ|HψE

±〉 = E〈ψ|ψE
±〉
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for every ψ ∈ S(R), where the last equation is equivalent to H|ψE
±〉 = E|ψE

±〉.
The Gelfand–Maurin spectral theorem [26,57,95] results in a spectral resolu-
tion of

H =
∫ ∞

−∞
E |ψE

±〉〈ψE
± |dE.

Here, the generalized eigenvectors are specified in terms of their coordinate
representations as slowly increasing functions, i.e., ψE

±(x) := 〈x|ψE
±〉 ∈ S′(R)

with

ψE
+(x) = 1

2
√

π
|x|−(iE+

1
2 ) and ψE

−(x) = 1
2
√

π
sgn(x)|x|−(iE+

1
2 ), (48)

refer to [26,27,57,95] and “Appendix F” for more details. Note that ψE
±(x) are

generalized eigenfunctions: They are not square integrable, but the integral∫
R
[ψE

±(x)]∗φ(x) dx exists as a distributional pairing for every φ ∈ S(R). Also,
note that these generalized eigenvectors can be decomposed into the number-
state basis with finite expansion coefficients that decrease to zero for large n,
refer to “Appendix F.” The spectral decomposition of the squeezing operator
is then given by

S(ξ) =
∫ ∞

−∞
e−iEξ[ |ψE

+〉〈ψE
+ | + |ψE

−〉〈ψE
− | ] dE,

refer to Eq. 6.12 in [26] and Eq. 2.14 in [27]. Note that these eigenvectors are
also invariant under the Fourier transform (e.g., as Hermite polynomials).

It immediately follows that the squeezing operator satisfies the general-
ized eigenvalue equation

S(ξ)|ψE
±〉 = e−iξE |ψE

±〉, (49)

which can be easily verified using the explicit action S(ξ)ψE
±(x)

= eξ/2ψE
±(eξx) = e−iEξψE

±(x). One can now specify the Born–Jordan parity
operator using its spectral decomposition.

Theorem 5. Generalized eigenvectors |ψE
±〉 of the squeezing operator from (48)

are also generalized eigenvectors of the Born–Jordan parity operator which
satisfy

ΠBJ |ψE
±〉 = ±π

2 sech(πE) |ψE
±〉

for all E ∈ R. The parity operator ΠBJ therefore admits the spectral decompo-
sition

ΠBJ = π
2

∫ ∞

−∞
sech(πE) [ |ψE

+〉〈ψE
+ | − |ψE

−〉〈ψE
− | ] dE,

where 〈ψE
± |Π = ±〈ψE

± | has been used.

Proof. The generalized eigenvalues can be computed via

ΠBJ |ψE
±〉 = 1

4

∫ ∞

−∞
sech(ξ/2)S(ξ) dξ Π |ψE

±〉,

where Π |ψE
±〉 = ±|ψE

±〉. Using (49), one obtains

ΠBJ |ψE
±〉 = ± 1

4

∫ ∞

−∞
sech(ξ/2)e−iEξ dξ |ψE

±〉 = ±π
2 sech(πE) |ψE

±〉.
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�
Remark 7. Recall that ΠBJ is a bounded (by Proposition 2) and self-adjoint
operator. Consequently, the usual spectral theorem in multiplication operator
form [66, Thm. 7.20] yields a σ-finite measure space (X,μ), a bounded, mea-
surable, real-valued function h on X, and unitary U : L2(R) → L2(X,μ) such
that

[UΠBJU
−1(ψ)](λ) = h(λ)ψ(λ)

for all ψ ∈ L2(X,μ) and λ ∈ X. While this undoubtedly is a nice represen-
tation, the spectral decomposition in Theorem 5 is more readily determined
with the help of the Gelfand–Maurin spectral theorem [26,57,95]. In particu-
lar, the said theorem lets us directly work with the generalized eigenfunctions
in Eq. (48), even though they are not square integrable.

5.3. Geometric Interpretation of Parity Operators

While, above, we have comprehensively explored analytic properties of the
Born–Jordan and other practically important parity operators, here we re-
late these mathematical objects to geometric transformations. Even the rather
complex Born–Jordan parity operator admits a surprisingly simple decompo-
sition into two elementary geometric transformations. Equation (47) decom-
poses the Born–Jordan parity operator into an ordinary reflection of the wave
function’s coordinate followed by a weighted average of squeezing operations
as ΠBJ = [ 1

4

∫∞
−∞ sech(ξ/2)S(ξ) dξ ] Π. As such, the action on any wave func-

tion ψ(x) ∈ L2(R) can be summarized as the reflected, squeezed function
S(ξ)Πψ(x) = eξ/2ψ(−eξx) averaged over all parameters ξ ∈ (−∞,∞) with
respect to the rapidly decaying weight function sech(ξ/2).

It is not only the Born–Jordan parity operator that admits a simple
geometric interpretation; rather this seems to hint at a universal property, at
least in the classes of practically important phase-space representations. In
particular, we now state that both Πτ and the pivotal parity operator Πs—
which contains the most popular variants of Wigner, Husimi, and Glauber P
phase-space functions as special cases—can be decomposed into elementary
geometric transformations.

Remark 8. Applying the substitution eξ := τ/(1−τ), the parity operator Πτ

from (41) can be decomposed for 0 < τ < 1 into

Πτ = cosh(ξ/2)S(ξ)Π

which consists of a coordinate reflection and a squeezing.

Consequently, the parity operator Πτ admits a spectral decomposition

Πτ = cosh(ξ/2)
∫

e−iEξ[ |ψE
+〉〈ψE

+ | − |ψE
−〉〈ψE

− | ] dE,

where 〈ψE
± |Π = ±〈ψE

± | has been used.

Remark 9. The parity operator with κs := ln[(1+s)/(1−s)] and −1 < s < 1
is the composition

Πs = (1−s)−1eκsâ†â Π
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from (40) of the usual coordinate reflection Π followed by a positive semi-
definite operator. In particular, Π−1 = 1

2 |0〉〈0|Π. Note that the positive semi-
definite operator eκsâ†â describes the effective phenomenon of photon loss for
s < 0, refer to [89]. Of course domain restrictions might need to be considered
for s > 0 as discussed earlier.

6. Explicit Matrix Representation of the Born–Jordan Parity
Operator

Recall that the s-parametrized parity operators Πs are diagonal in the Fock
basis and their diagonal entries can be computed using the simple expression
in (40). This enables the experimental reconstruction of distribution functions
from photon-count statistics [7,14,46,93] in quantum optics.

Remark 10. The Born–Jordan parity operator ΠBJ is not diagonal in the
number-state basis, as its filter function KBJ(Ω) is not invariant under ar-
bitrary phase-space rotations, refer to Property 4. The filter function KBJ(Ω)
is, however, invariant under π/2 rotations in phase space, and therefore, only
every fourth off-diagonal is nonzero.

We now discuss the number-state representation of the parity operator
ΠBJ, which provides a convenient way to calculate (or, more precisely, approx-
imate) Born–Jordan distributions.

Theorem 6. The matrix elements [ΠBJ]mn := 〈m|ΠBJ n〉 of the Born–Jordan
parity operator in the Fock basis can be calculated in the form of a finite sum

[ΠBJ]mn =
n∑

k=0

m−n∑

�=0
� even

dk�
mn Φk

(m−n−�)/2,�/2 , (50)

for m ∈ {n, n + 4, n + 8, . . . } and [ΠBJ]mn = [ΠBJ]nm with the coefficients

dk�
mn := (−1)(�+m−n)/2

√
n!
m!

2(2k+m−n)/2

(
m

n−k

)(
m−n

�

)
/k!, (51)

Φk
ab := [∂k

μ[∂a
λ∂b

μf(λ, μ)]|λ=μ]|μ=1. (52)

Here, Φk
ab denotes the ath and bth partial derivatives of the function f(λ, μ) =

arcsinh[1/
√

λμ] with respect to its variables λ and μ, respectively, evaluated at
λ = μ, then differentiated again k times and finally its variable is set to μ = 1.

Refer to “Appendix G” for a proof. The derivatives in (52) can be calcu-
lated in the form of a finite sum

Φk
ab =

√
2(−1)a+b 2−2a−2b−k

a+b+k−1∑

j=0

ξabk
j , (53)

where a + b + k ≥ 1 and ξabk
j are recursively defined integers, refer to (68)

in “Appendix H.” Substituting � for 2� in (50), the matrix elements [ΠBJ]mn



4204 B. Koczor et al. Ann. Henri Poincaré

then depend only on these integers ξabk
j via the finite sum

[ΠBJ]mn = γmn

n∑

k=0

(m−n)/2∑

�=0

[
∑

j

ξa�k
j ] (−1)�+m−n

(
m

n−k

)(
m−n

2�

)
/k!,

where γmn := 2[−(m−n)+1]/2
√

n!/m! for m ∈ {n, n+4, n+8, . . . } and a =
(m−n−2�)/2.

Figure 1a shows the first 8×8 entries of [ΠBJ]. One observes the following
structure: Only every fourth off-diagonal is nonzero, the matrix is real and
symmetric, and the entries along every diagonal and off-diagonal decrease in
their absolute value. In particular, the diagonal elements of ΠBJ admit the
following special property.

Proposition 3. For every n ∈ {0, 1, 2, . . .}, the diagonal entries of ΠBJ in the
Fock basis are

[ΠBJ]nn = arcsinh(1) −
√

2
n−1∑

k=0

(−1)k

k+1

� k
2 �∑

m=0

(
2m

m

)(−1
4

)m

. (54)

In particular, [ΠBJ]nn → 0 as n → ∞. For a proof, we refer to “Appendix I.”

Note that the sum of these decreasing diagonal entries results in a trace
Tr[ΠBJ] = 1/2 (Property 6) in the number-state basis. However, this trace
does not necessarily exist in an arbitrary basis, as ΠBJ is not a trace-class
operator.

Remark 11. Let us emphasize that boundedness of ΠBJ (Proposition 2) guar-
antees that using a (large enough) finite block of ΠBJ for computations yields
a good approximation of Fρ(Ω,BJ), refer to “Appendix C” for details.

In the following, we specify a more convenient form for the calculation
of these matrix elements, i.e., a direct recursion without summation, which is
based on the following conjecture (see “Appendix J”).

Conjecture 1. The nonzero matrix elements

[ΠBJ]k+4�,k = [ΠBJ]k,k+4� = Γk� [Mk� + δ�0 arcsinh(1)/
√

2], (55)

of the Born–Jordan parity operator are determined by a set of rational numbers
Mk� where Γk� = 2−2�+1/2

√
k!/(k+4�)! and k, � ∈ {0, 1, 2, . . . }. The indexing

is specified relative to the diagonal (where � = 0) and δ�m is the Kronecker
delta. The rational numbers Mk� can be calculated recursively using only 8
numbers as initial conditions, refer to “Appendix J” for details. Unlike (50),
this form does not require a summation.

Figure 1b shows the first 6 × 6 elements of the recursive sequence of
rational numbers Mk�. The first column of Mk0 corresponds to the diagonal of
the matrix [ΠBJ]mn from Fig. 1a. For example, for k = 5 one obtains M5,0 =
−43/60, which corresponds to [ΠBJ]5,5 = Γ5,0[M5,0 + δ0,0 arcsinh(1)/

√
2] and

Γ5,0 =
√

2, and therefore [ΠBJ]5,5 = −43
√

2/60 + arcsinh(1) as detailed in
Fig. 1a.
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Figure 1. a The first 8 × 8 matrix elements of the Born–
Jordan parity operator from Eq. (50) where ash denotes
arcsinh(1). b The first 6×6 elements of the recursive sequence
that defines the Born–Jordan parity operator via Eq. (55).
Orange and blue colors represent positive and negative val-
ues, respectively, while the color intensity reflects the absolute
value of the corresponding numbers



4206 B. Koczor et al. Ann. Henri Poincaré

Figure 2. a, b Wigner, Born–Jordan, and Husimi Q phase-
space plots of the number states |0〉 and |1〉 (which are eigen-
states of the quantum harmonic oscillator). c Correspond-
ing phase-space plots of the Schrödinger cat state |cat〉 =
(|0〉+|1〉)/

√
2 (which is a superposition of the previous states)

The direct recursion in Conjecture 1 enables us to conveniently and ef-
ficiently calculate the matrix elements [ΠBJ]mn, and we have verified the cor-
rectness of this approach for up to 6400 matrix elements, i.e., by calculating a
matrix representation of size 80×80. This facilitates an efficient calculation and
plotting of Born–Jordan distributions for harmonic oscillator systems, such as
in quantum optics [60,88,94]. Note that a recursively calculated 80×80 matrix
representation, which we have verified with exact calculations, is sufficient for
most physical applications, i.e., Figs. 2 and 3 were calculated using 30 × 30
matrix representations. However, a matrix representation of size 2000 × 2000
can be easily calculated on a current notebook computer using the recursive
method. Numerical evidence shows that the matrix representation of ΠBJ can
be well-approximated by a low-rank matrix, i.e., diagonalizing the matrix ΠBJ

reveals only very few significant eigenvalues. In particular, the sum of squares
of the first 9 eigenvalues corresponds to approximately 99.97% of the sum of
squares of all the eigenvalues of a 2000 × 2000 matrix representation.

7. Example Quantum States

Matrix representations of parity operators are used to conveniently calculate
phase-space representations for bosonic quantum states via their associated
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Figure 3. a Wigner and Born–Jordan phase-space plots of
the number state |4〉. b The Born–Jordan distribution is de-
composed into functions that correspond to diagonal and off-
diagonal entries of the parity operator matrix

Laguerre polynomial decompositions. The s-parametrized distribution func-
tions of Fock states |n〉 are sums

F|n〉(Ω, s) =
∑

μ=0

|[D(Ω)]nμ|2 [Πs]μμ

of the associated Laguerre polynomials from (10), which are weighted by their
parity operator elements. The corresponding phase-space functions are radi-
ally symmetric as |[D(Ω)]nμ|2 depends only on the radial distance x2 + p2.
The Wigner functions in Fig. 2a, b are radially symmetric and show strong
oscillations, which are sometimes regarded as a quantum-mechanical feature
[88].

In contrast, the Born–Jordan parity operator is not diagonal in the number-
state representation and it can be written in terms of projectors as ΠBJ =∑

μ=0[ΠBJ]μμ|μ〉〈μ|+
∑

μ=0

∑
ν=1[ΠBJ]μ,4ν (|μ+4ν〉〈μ|+|μ〉〈μ+4ν|). The Born–

Jordan distribution of number states |n〉 is given by

F|n〉(Ω,BJ) =
∑

μ=0

|[D]nμ|2 [ΠBJ]μμ (56)

+
∑

μ=0

∑

ν=1

2�([D]nμ([D]n,μ+4ν)∗)[ΠBJ]μ,μ+4ν . (57)

The Born–Jordan distribution of coherent states, i.e., the displaced vacuum
states, closely matches the Wigner functions, see Fig. 2a. The first part in
Eq. (56) contains the diagonal elements of the parity operator which corre-
spond to the radially symmetric part of F|n〉(Ω,BJ), see Fig. 3b (left). The
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second part in Eq. (57) results in a radially non-symmetric function, see Fig. 3b
(right). The radially symmetric parts are quite similar to the Wigner function
and have n + 1 wave fronts enclosed by the Bohr–Sommerfeld band [48,88],
i.e., the ring with radius

√
2n+1. The radially non-symmetric functions have

n+1 local maxima along the outer squares, i.e., along phase-space cuts at the
Bohr–Sommerfeld distance x, p ∝

√
2n+1. The sum of these two contributions

is the Born–Jordan distribution, and it is not radially symmetric for number
states, see Fig. 3a.

8. Conclusion

We have introduced parity operators Πθ which give rise to a rich family of
phase-space distribution functions of quantum states. These phase-space func-
tions have been previously defined in terms of convolutions, integral trans-
formations, or Fourier transformations. Our approach using parity operators
is both conceptually and computationally advantageous and now allows for
a direct calculation of phase-space functions as quantum-mechanical expec-
tation values. This approach therefore averts the necessity for the repeated
and expensive computation of Fourier transformations. We motivate the name
“parity operator” by the fact that parity operators Πθ = Aθ ◦ Π are com-
posed of the usual parity operator and some specific geometric or physical
transformation. We detailed the explicit form of parity operators for various
phase spaces and, in particular, for the Born–Jordan distribution. We have
also obtained a generalized spectral decomposition of the Born–Jordan parity
operator, proved its boundedness, and explicitly calculated its matrix repre-
sentation in the number-state basis. We conjecture that these matrix elements
are determined by a proposed recursive scheme which allows for an efficient
computation of Born–Jordan distribution functions. Moreover, large matrix
representations of the Born–Jordan parity operator can be well approximated
using rank-9 matrices. All this will be useful to connect our results with appli-
cations in (e.g.,) quantum optics, where techniques such as squeezing operators
and the number-state representation are widely used.
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A Extension of Operators from Schwartz Functions to
Distributions

Assume we have a linear operator T : S(R) → S(R) or, more generally, T :
S(R) → (R → C) and we want to extend its action to tempered distributions.
Usually, this is done by introducing some operator T̂ : S(R) → (R → C)
(which can—but does not have to—be the same as T ) such that

(Tφ)(ψ) := φ(T̂ψ) (58)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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for all φ ∈ DT := {φ ∈ S ′(R) : φ ◦ T̂ ∈ S ′(R)} and all ψ ∈ S(R). Usually, T̂ is
chosen such that (58) is consistent with the action of T on those distributions
which are generated by Schwartz functions. More precisely, one fixes some
injective, usually linear or antilinear map e : S(R) → S ′(R) and requires that
T̂ is chosen such that [T, e] ≡ 0, i.e.,

e(φ)(T̂ψ) =
(
T (e(φ))

)
(ψ) =

(
(T ◦ e)(φ)

)
(ψ) =

(
(e ◦ T )(φ)

)
(ψ) = e(Tφ)(ψ)

for all φ, ψ ∈ S(R) with e(φ) ∈ DT . Thus, by identifying φ ∈ S(R) with the
tempered distribution e(φ) ∈ S ′(R) an extension is defined such that there
is only a “formal” difference between the action of T on φ compared to the
action of T on e(φ). Let us illustrate this by means of a simple example:

Example 3. Consider the displacement operator from Eq. (11) which acts on
any function ψ : R → C—so in particular on any Schwartz function—via
[D(x0, p0)ψ](x) = exp[ip0(x−x0/2)/�]ψ(x−x0) for all x, x0, p0 ∈ R. Depending
on how one defines the distributional pairing of two classical functions, there
are two ways to extend D to S ′(R):
(1) The usual way of embedding S(R) ↪→ S ′(R) is done via the linear map
ι(ψ) :=

∫
ψ(x)(·)(x) dx. Then for all φ, ψ ∈ S(R) and all Ω ∈ R

2 one finds [44,
Eq. (1.11)]

ι(φ)
(D(Ω)ψ

)
= ι

(D∧x(Ω)φ
)
ψ or, equivalently ι

(D(Ω)φ
)
ψ = ι(φ)

(D∧x(Ω)ψ
)

where D∧x(x0, p0) := D(−x0, p0) for all x0, p0 ∈ R. This suggests setting
T̂ := D∧x in (58) because this way one has [D(Ω), ι] ≡ 0, that is, D(Ω)(ι(φ)) ≡
ι(D(Ω)φ) for all Ω ∈ R

2 and all φ : R → C such that
∫

φ(x)(·)(x) dx ∈ S ′(R).
In other words this extension of the displacement operator is consistent with
its action on S(R) by means of the embedding ι.
(2) One may also consider the canonical (antilinear, bijective) map from L2(R)
to its dual space (L2(R))∗ from the Riesz representation theorem which acts via
〈 · | (ψ) := 〈ψ| · 〉 :=

∫
ψ(x)∗(·)(x) dx. One readily verifies that 〈φ|D(Ω)ψ〉 =

〈D(−Ω)φ|ψ〉 for all φ, ψ ∈ L2(R), i.e., D(Ω)† = D(−Ω) for all Ω ∈ R
2. Setting

T̂ := D(Ω)† in (58) thus yields an extension of D which is consistent with
respect to 〈 · | : one finds [D(Ω)〈 · | ] ≡ 0, that is, for all φ, ψ ∈ S(R)

D(Ω)(〈φ, · 〉)(ψ)
(58)
= 〈φ,D(−Ω)ψ〉 = 〈D(Ω)φ, ψ〉 = 〈D(Ω)φ, · 〉(ψ).

Having introduced the concept of operator extensions, we may apply it to
generalized parity operators. But first let us generalize Definition 3 to arbitrary
tempered distributions θ, even though this is beyond what we need in the main
sections of this article.

Remark 12. Formally (22) can be rewritten as Πθ = (4π�)−1〈K∗
θ ,D〉. Because

admissible kernels by definition satisfy 〈K∗
θ , ψ〉 = 2π�[Fσ(θ)]ψ for ψ ∈ S(R),

this leads to an extension of Definition 3 to arbitrary θ ∈ S ′(R2) via the linear
operator Πθ : S(R) → (R → C), Πθ := 1

2 [Fσ(θ) ◦ D], i.e.,

(Πθψ)(x) = 1
2Fσ(θ)(Dψ(x)) = 1

2θ
(
Fσ(Dψ(x))

)
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for all ψ ∈ S(R), x ∈ R. Here, Dψ(x) ∈ S(R2) defined via Ω �→ (D(Ω)ψ)(x)
is the displacement of ψ at x as a function of Ω. One readily verifies that for
admissible kernels this definition reproduces (25) as well as the definition of
the parity operator in (15).

Similar to Example 3(1), let us extend Πθ with respect to the embedding
ι : S(R) ↪→ S ′(R), that is, we have to find an operator Π̃θ : S(R) → (R → C)
such that ι(φ)(Π̃θψ) = ι(Πθφ)(ψ) for all ψ, φ ∈ S(R). We claim that

Π̃θ := 1
2 [Fσ(θ∧p) ◦ D] (59)

does the job where θ∧p(a) := θ(a∧p) and a∧p(x0, p0) := a(x0,−p0) for all a ∈
S(R2), x0, p0 ∈ R. Before we verify this we will first show ι(φ)

(
Fσ[Dψ](x0,−p0)

)

= ι
(
Fσ[Dφ](x0, p0)

)
(ψ) for all φ, ψ ∈ S(R), x0, p0 ∈ R as an intermediate re-

sult. One computes

ι(φ)
(
Fσ[Dψ](x0,−p0)

)

= (2π�)−1

∫
φ(x)

∫
e− i

�
(x′(−p0)−x0p′)(D(x′, p′)ψ

)
(x) dx′ dp′ dx

= (2π�)−1

∫
φ(x)

∫
e− i

�
(x′(−p0)−x0p′)e

i
�

p′(x− 1
2x′)ψ(x−x′) dx′ dp′ dx

= (2π�)−1

∫
φ(x+x′)

∫
e− i

�
((−x′)p0−x0p′)e

i
�

p′(x+ 1
2x′)ψ(x) dx′ dp′ dx

=
∫ (

(2π�)−1

∫
e− i

�
(x̃p0−x0p′)e

i
�

p′(x− 1
2 x̃)φ(x−x̃) dx̃ dp′

)
ψ(x) dx

=
∫

Fσ[Dφ(x)](x0, p0)ψ(x) dx = ι
(
Fσ[Dφ](x0, p0)

)
(ψ).

Together with the linearity of the integral as well as the linearity and continuity
of θ, this implies

ι(φ)(1
2 [Fσ(θ∧p) ◦ D]ψ) = 1

2

∫
φ(x)θ

((
Fσ(Dψ(x))

)∧p)dx

= 1
2θ
(∫

φ(x)
(
Fσ(Dψ(x))

)∧p dx
)

= 1
2θ
(∫

Fσ(Dφ(x))ψ(x) dx
)

= 1
2

∫
θ
(
Fσ(Dφ(x))

)
ψ(x) dx = ι

(
1
2 [Fσ(θ) ◦ D]φ

)
(ψ)

for all φ, ψ ∈ S(R). Thus, by setting T = Πθ and T̂ = Π̃θ in (58) with Π̃θ from
(59), that is,

(Πθφ)(ψ) := 1
2φ
[
θ
((

Fσ[Dψ]
)∧p)]

for all ψ ∈ S(R), φ ∈ Dθ := {φ ∈ S ′(R) : φ
[
θ
((

Fσ(D(·))
)∧p)] ∈ S ′(R)}, we

get an extension of Πθ which is compatible with the integral pairing ι in the
sense that [Πθ, ι] ≡ 0.

Now, as in Example 3(2), let us extend Πθ with respect to 〈 · | : L2(R) →
(L2(R))∗. We claim that

Π̃θ := 1
2 [Fσ( ∗ ◦ θ ◦ ∗ ) ◦ D] (60)
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satisfies 〈φ, Π̃θψ〉 = 〈Πθφ, ψ〉 for all ψ, φ ∈ S(R), where ∗ is the usual complex
conjugate. Similar as before, one first shows

∫ (
Fσ[Dψ(x)](x0, p0)

)∗
φ(x) dx =

∫
ψ(x)∗Fσ[Dφ(x)](x0, p0) dx

via direct calculation in order to conclude that

〈φ, Π̃θψ〉 = 1
2

∫
φ(x)∗(θ

[
(Fσ(Dψ(x)))∗])∗

dx = 1
2

(∫
φ(x)θ

[
(Fσ(Dψ(x)))∗]dx

)∗

= 1
2

(
θ
[ ∫ (Fσ(Dψ(x))

)∗
φ(x) dx

])∗
= 1

2

(
θ
[ ∫

ψ(x)∗Fσ(Dφ(x)) dx
])∗

= 1
2

∫ (
θ
[Fσ(Dφ(x))

])∗
ψ(x) dx = 〈Πθφ, ψ〉

for all φ, ψ ∈ S(R). Hence, Π̃θ = 1
2 [Fσ( ∗ ◦ θ ◦ ∗ ) ◦ D] is indeed the extension

of Πθ with respect to 〈 · | which we were looking for.
In general, these two extensions will be different so one has to be careful

about which framework one uses. However, from the explicit form of Π̃θ one
knows that for any θ ∈ S ′(R2) these extensions coincide if and only if θ∧p ≡
∗ ◦ θ ◦ ∗ . This translates to filter functions as follows:

Lemma 3. Consider any admissible θ ∈ S ′(R2) with associated filter function
Kθ : R

2 → C. The extension of Πθ with respect to ι coincides with the extension
of Πθ with respect to 〈 · | if and only if K∗

θ ≡ K∧p
θ . In this case, (58) becomes

(Πθφ)(ψ) = (4π�)−1

∫
K∗

θ (Ω)φ
(
D(−Ω)ψ

)
dΩ

= (4π�)−1

∫
Kθ(x0, p0)φ

(
D(−x0, p0)ψ

)
dx0dp0

for all φ ∈ S ′(R) such that
∫

K∗
θ (Ω)φ

[
D(−Ω)(·)

]
dΩ ∈ S ′(R), and all ψ ∈

S(R).

Proof. Because θ is admissible (i.e., θ = (2π�)−1〈K∗
θ ,Fσ(·) 〉 for some Kθ :

R
2 → C) we compute

Fσ(∗ ◦ θ ◦ ∗)(a) =
(
θ
[
Fσ(a)∗])∗ = (2π�)−1

(∫
Kθ(Ω)Fσ

[
Fσ(a)∗](Ω) dΩ

)∗

= (2π�)−1
(∫

Kθ(Ω)Fσ

[
Fσ(a)

]∗(−Ω)dΩ
)∗

= (2π�)−1

∫
K∗

θ (Ω)a(−Ω)dΩ

for all a ∈ S(R2). Here, we used F2
σ = id as well as the readily verified identity

Fσ[a∗](Ω) = Fσ[a]∗(−Ω). If we denote the extension of Πθ with respect to 〈 · |
by Πθ,L2 , this implies

(Πθ,L2φ)(ψ) = 1
2φ
(
Fσ( ∗ ◦ θ ◦ ∗ )[Dψ]

)
= (4π�)−1

∫
K∗

θ (Ω)φ
(
D(−Ω)ψ

)
dΩ.

On the other hand, the symplectic nature of Fσ yields Fσ(a∧p) = (Fσ(a))∧x

for all a ∈ S(R2) (where a∧x(x0, p0) := a(−x0, p0)). Similarly, let Πθ,ι denote
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the extension of Πθ with respect to ι; this lets us compute

(Πθ,ιφ)(ψ) = (4π�)−1

∫
Kθ(Ω)φ

(
Fσ

[(
Fσ[Dψ]

)∧p](Ω)
)

dΩ

= (4π�)−1

∫
Kθ(Ω)φ

(
Fσ

[(
Fσ[Dψ]

)]∧x(Ω)
)

dΩ

= (4π�)−1

∫
Kθ(x0, p0)φ

(
D(−x0, p0)ψ

)
dx0dp0

= (4π�)−1

∫
Kθ(x0,−p0)φ

(
D(−x0,−p0)ψ

)
dx0dp0.

Thus, Πθ,ι ≡ Πθ,L2 is equivalent to K∗
θ ≡ K∧p

θ as claimed. �

We emphasize that all filter functions used in practice satisfy K∗
θ ≡ K∧p

θ

(cf. Tables 2 and 3), meaning for applications it does not matter whether one
extends Πθ with respect to ι or 〈 · |.

B Proofs of Lemma 2 and Theorem 1

Before we dive into the proofs of the results in question, we first need a lemma
which relates convolutions of the cross-Wigner transform with matrix elements
of the generalized Grossmann–Royer operator.

Lemma 4. Given any θ ∈ S ′(R2) one finds

〈φ,D(Ω)ΠθD†(Ω)ψ〉 = π�[θ ∗ Wφ,ψ](Ω) (61)

for all φ, ψ ∈ S(R) and all Ω ∈ R
2. If Πθ ∈ B(L2(R)), then Eq. (61) even

holds for all φ, ψ ∈ L2(R).

Proof. Sums in the argument of the displacement operator decompose as (see
Eq. (14) and [44, Eq. (1.10)]):

D(Ω−Ω′) = e− i
2�

(xp′−x′p)D(Ω)D(−Ω′).

This connects the r.h.s. of (61) with the Grossmann–Royer operator (16):

〈φ, [T (Ω)D]†(Ω′)Π[T (Ω)D](Ω′)ψ〉 = 〈φ,D(Ω−Ω′)ΠD†(Ω−Ω′)ψ〉
= 〈φ,D(Ω)D(−Ω′)ΠD†(−Ω′)D†(Ω)ψ〉 = 〈D(−Ω)φ, 1

2Fσ[D(·)D(−Ω)ψ](Ω′)〉

Together with linearity and continuity of θ, this implies

π�[θ ∗ Wφ,ψ](Ω) = θ
(
〈φ, [T (Ω)D]†(·)Π[T (Ω)D](·)ψ〉

)

= θ
(
〈D(−Ω)φ, 1

2Fσ[D(·)D(−Ω)ψ]〉
)

= 〈φ,D(Ω)1
2θ
[
Fσ

(
(D(·)D(−Ω)ψ)

)]
〉

= 〈φ,D(Ω)ΠθD(−Ω)ψ〉 = 〈φ,D(Ω)ΠθD†(Ω)ψ〉.

In the second-to-last step, we used the general definition of Πθ from Remark
12. Now, if Πθ is bounded then the l.h.s. of (61) extends to all square-integrable
functions by density of S(R) in L2(R). �
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Thus, we have the (formal) equality 〈φ,Πθψ〉 = π�[θ ∗ Wφ,ψ](0, 0) for all
φ, ψ : R → C where this expression is well defined. Using this, we are ready
to prove Lemma 2, in particular the equivalence of (i,a), (i,b) as well as the
equivalence of (ii,a), (ii,b), (ii,c) for general θ ∈ S ′(R2).

B.1 Proof of Lemma 2

Proof of Lemma 2. “(i,a) ⇒ (i,b)”: Because Πθ is well defined, ψ �→ [θ ∗
Wψ](0, 0) = (π�)−1〈ψ|Πθψ〉 is well defined on L2(R) as well. “(i,b) ⇒ (i,a)”:
Assume that ψ �→ [θ ∗ Wψ](0, 0) is well defined on L2(R). Then, 〈ψ|Πθψ〉 =
π�[θ ∗ Wψ,ψ](0, 0) = π�[θ ∗ Wψ](0, 0) exists for all ψ ∈ L2(R) and the same is
true for 〈ψ|Πθφ〉 using the parallelogram law

4〈ψ|Πθφ〉 = 〈ψ+φ|Πθ(ψ+φ)〉 − 〈ψ−φ|Πθ(ψ−φ)〉
+i〈ψ−iφ|Πθ(ψ−iφ)〉 − i〈ψ+iφ|Πθ(ψ+iφ)〉.

Hence, φ̃ �→
∫

φ̃(x)(Πθφ)(x) dx is a well-defined linear functional on L2(R)
meaning—because it is a functional “of integral pairing form”—it is automat-
ically continuous as we prove now: If 〈f, · 〉 : L2(R) → C, g �→

∫
f(x)g(x) dx

is well defined for some f : R → C, then (�(fg))±, (�(fg))± are inte-
grable by definition of the Lebesgue integral, where f+(x) := max(f(x), 0)
and f− := −min(f(x), 0). But these can be expanded into (�(f))±(�(g))±,
(�(f))±(�(g))±, (�(f))±(�(g))±, (�(f))±(�(g))± meaning the linear func-
tionals g �→

∫
(�(f))±g and g �→

∫
(�(f))±g are also well defined on L2(R).

Now, each of these is a positive functional on L2(R) which is well known to be
continuous (one can prove this similar to [41, Ch. 2, Lemma 2.1]). Therefore,
〈f, · 〉 is continuous as it is the linear combination of four continuous function-
als.

Then, the Riesz representation theorem (cf., e.g., [101, Supplementary
Material, Thm. S.4]) yields f ∈ L2(R) such that f∗(x) = (Πθφ)(x) for almost
all x ∈ R; in particular, Πθφ ∈ L2(R). But φ ∈ L2(R) was chosen arbitrarily
meaning Πθ is a well-defined linear operator on L2(R). The equivalence “(ii,a)
⇔ (ii,b)” is obvious and “(ii,a) ⇔ (ii,c)” follows at once from (61) together
with

sup
‖ψ‖,‖φ‖=1

|[θ ∗ Wφ,ψ](0, 0)| = sup
‖ψ‖,‖φ‖=1

|〈φ|Πθψ〉| = sup
‖φ‖=1

‖Πθφ‖L2 = ‖Πθ‖sup.

Now, assume that θ is admissible. Because “(ii,c) ⇒ (i,a)” is trivial,
all that remains to show is “(i,a) ⇒ (ii,c)”: Our idea is to show that θ being
admissible implies that Πθ can be written as the linear combination of two well-
defined symmetric operators on L2(R). This would conclude the proof because
every symmetric operator is bounded by the Hellinger–Toeplitz theorem [101,
p. 84]; hence, Πθ is bounded as well. Set Kθ∗(Ω) := K∗

θ (−Ω) and define Πθ∗

to be the parity operator generated by Kθ∗ . First, we have to see whether
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Πθ being well defined on L2(R) implies that the same holds for Πθ∗ . Given
ψ, φ ∈ L2(R), we formally compute

〈ψ|Πθ∗φ〉 = (4π�)−1

∫
K∗

θ (−Ω)〈ψ|D(Ω)φ〉 dΩ = (4π�)−1

∫
K∗

θ (Ω̃)〈ψ|D†(Ω̃)φ〉 dΩ̃

= (4π�)−1

∫
K∗

θ (Ω̃)
(
〈φ|D(Ω̃)ψ〉

)∗
dΩ̃ = (〈φ|Πθψ〉)∗.

Thus, 〈ψ|Πθ∗φ〉 exists for all ψ, φ ∈ L2(R) so by the same argument we used
above, Πθ∗ is well defined on L2(R). This yields the decomposition Πθ =
(Πθ+Πθ∗)/2+i·(Πθ−Πθ∗)/(2i), meaning all that is left to show is that Πθ+Πθ∗ ,
i(Πθ−Πθ∗) are symmetric operators; indeed, given ψ, φ ∈ L2(R) one computes

〈ψ|(Πθ+Πθ∗)φ〉 = 〈ψ|Πθφ〉 +
(
〈φ|Πθψ〉

)∗ =
(
〈φ|Πθ∗ψ〉 + 〈φ|Πθψ〉

)∗

= 〈(Πθ+Πθ∗)ψ|φ〉

and analogously for i(Πθ−Πθ∗). As stated above Πθ+Πθ∗ , i(Πθ−Πθ∗)∈B(L2(R))
by the Hellinger–Toeplitz theorem so Πθ ∈ B(L2(R)) as well. �

B.2 Proof of Theorem 1

Moreover, Lemma 4 enables a simple proof of Theorem 1:

Proof of Theorem 1. Using the spectral decomposition ρ =
∑∞

n=1 pn|ψn〉〈ψn|
as well as Definition 1, we compute for equation (28) that

Fρ(Ω, θ) = (π�)−1 Tr [ ρD(Ω)ΠθD†(Ω)] =
∞∑

n=1

pn(π�)−1〈ψn|D(Ω)ΠθD†(Ω)|ψn〉

=
∞∑

n=1

pn[θ ∗ Wψn
](Ω) =

[
θ ∗

∞∑

n=1

pnWψn

]
(Ω) = [θ ∗ Wρ](Ω).

Now, for Equation (29): If θ is admissible, i.e., θ = (2π�)−1〈K∗
θ ,Fσ(·)〉 =

(2π�)−1〈(FσK∨
θ )∗|, then Lemma 4 verifies the desired equality of quadratic

forms as

D(Ω)ΠθD†(Ω) = [θ ∗ D(·)ΠD†(·)](Ω)

= (2π�)−1[〈(FσK∨
θ )∗| ∗ D(·)ΠD†(·)](Ω) = (2π�)−1[FσK∨

θ ∗ D(·)ΠD†(·)](Ω)

= Fσ[K∨
θ · Fσ(D(·)ΠD†(·))](Ω)

(16)
= 1

2Fσ[K∨
θ · D†](Ω) = 1

2Fσ[Kθ · D]∨(Ω) = 1
2Fσ[Kθ · D](−Ω).

�

C Phase-Space Distributions for Arbitrary Convolution Kernels

Given arbitrary θ ∈ S ′(R2), one can make sense of the phase-space distribution
function by restricting the domain of ρ �→ Fρ(Ω, θ) to quantum states ρ which,
e.g., have a finite representation in the number-state basis. Indeed, let ρ ∈
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B1(L2(R)) be given such that ρ =
∑N

m,n=1〈m|ρn〉|m〉〈n| for some N ∈ N0.
Then, (27) becomes

Fρ(Ω, θ) =
N∑

m,n=0

(π�)−1〈mρ|n〉〈D†(Ω)n|ΠθD
†(Ω)m〉, (62)

which is a well-defined expression regardless of the chosen θ ∈ S ′(R2), cf. the
paragraph right before Lemma 2 together with the simple fact that D is an
automorphism on S(R). To see that (62) generalizes Definition 4 note that if
Πθ ∈ B(L2(R)), then limN→∞ FρN

(Ω, θ) = Fρ(Ω, θ) uniformly in Ω ∈ R
2 for

all states ρ, where ρN :=
∑N

m,n=1〈m|ρn〉|m〉〈n| is just the “upper left N × N

block” of ρ. One sees this using Prop. 16.6.6 from [97] as

|FρN (Ω, θ) − Fρ(Ω, θ)| ≤ ‖ρ − ρN‖1‖D(Ω)ΠθD†(Ω)‖sup ≤ ‖ρ−ρN‖1‖Πθ‖sup → 0.

Here we used that D(Ω) is unitary so it has operator norm one, together with
the fact that ‖ρ−ρN‖1 → 0 as N → ∞ which is a simple consequence of
Prop. 2.1 in [122]. This motivates the general definition

F (Ω, θ) : DF → (R2 → C)

ρ �→ Fρ(Ω, θ) :=
∞∑

m,n=0

(π�)−1〈mρ|n〉〈D†(Ω)n|ΠθD
†(Ω)m〉

with domain

DF :=
{

ρ ∈ B1(L2(R)) s.t.
( N∑

m,n=0

(π�)−1〈mρ|n〉〈D†(Ω)n|ΠθD†(Ω)m〉
)

N∈N

converges
}

.

In particular, Equation (62) shows that for all θ ∈ S′(R2) the domain DF

is dense in the full trace class. However, unlike in the bounded case, it may
happen that Ω �→ Fρ(Ω, θ) is not a function of slow growth so F (Ω, θ) may not
map to the phase-space distributions.

D Proofs of the Properties from Sect. 4.2

D.1 Proof of Property 1

Recall that the Hilbert–Schmidt norm of an operator A is defined as ‖A‖2
HS :=

Tr(A†A). One obtains

‖Πθ‖2
HS = Tr(Π†

θΠθ) = (4π�)−2

∫∫
K∗

θ (Ω)Kθ(Ω′)Tr[D†(Ω)D(Ω′)] dΩdΩ′

by substituting Πθ with its definition from (22). We formally replace the trace
Tr[D†(Ω)D(Ω′)] with 2π� δ(Ω−Ω′) [23], and it follows that

‖Πθ‖2
HS = (8π�)−1

∫
K∗

θ (Ω)Kθ(Ω) dΩ = (8π�)−1‖Kθ(Ω)‖2
L2 .

The inequality ‖Πθ‖sup ≤ ‖Πθ‖HS = ‖Kθ(Ω)‖L2/
√

8π� [101, Thm. VI.22.(d)]
concludes the proof.
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D.2 Proof of Property 2

Recall that the Wigner function is square integrable as Tr(ρ†
1 ρ2) =

∫
W ∗

ρ1

Wρ2 dΩ and |〈Wρ1 |Wρ2〉| ≤ 1 hold. Similarly, one obtains for elements Fρ(Ω, θ) =
θ(Ω) ∗ Wρ(Ω) of the Cohen class the scalar products
∫

F ∗
ρ1

(Ω, θ)Fρ2(Ω, θ) dΩ =
∫

[θ(Ω) ∗ Wρ1(Ω)]∗[θ(Ω) ∗ Wρ2(Ω)] dΩ

=
∫

Fσ[θ(·) ∗ Wρ1(·)]∗(Ω)Fσ[θ(·) ∗ Wρ2(·)](Ω) dΩ

using the Plancherel formula
∫

a(Ω)b∗(Ω) dΩ =
∫

aσ(Ω)b∗
σ(Ω) dΩ. One can

simplify the integrands to

Fσ[θ(·) ∗ Wρ2(·)](Ω) = 2π�Fσ[θ(·)](Ω)Fσ[Wρ2(·)](Ω)

by applying the convolution formula from (18). Theorem 1 implies Kθ(Ω) =
2π�[Fσθ(·)](−Ω) which yields the simplified integral
∫

F ∗
ρ1

(Ω, θ)Fρ2(Ω, θ) dΩ =
∫

|Kθ(−Ω)|2 Fσ[Wρ1(·)]∗(Ω)Fσ[Wρ2(·)](Ω) dΩ.

(63)
By assumption, Kθ(Ω) ∈ L∞(R2), i.e., there exists a constant C ∈ R such that
|Kθ(Ω)| ≤ C holds almost everywhere. Applying this bound to Eq. (63) after
setting ρ1 = ρ2 =: ρ yield

∫
|Kθ(−Ω)|2 |Fσ[Wρ(·)](Ω)|2 dΩ ≤ C2

∫
|Fσ[Wρ(·)](Ω)|2 dΩ = C2

∫
|Wρ(Ω) |2 dΩ

with the help of the Plancherel formula. The above-mentioned result for the
Wigner function implies the square integrability of Fρ(Ω, θ), which concludes
the proof.

D.3 Proof of Property 3

As in (8), one considers the density operators ρ =
∑

n pn|ψn〉〈ψn| and ρ′ =∑
n pn|φn〉〈φn|. The orthonormality of |φn〉 = D(Ω′)|ψn〉 is used to evaluate

the trace and this yields

Tr [ ρ′ D(Ω)ΠθD†(Ω)] =
∑

n

pn〈φn|D(Ω)ΠθD†(Ω)φn〉

=
∑

n

pn〈ψn|D†(Ω′)D(Ω)ΠθD†(Ω)D(Ω′)ψn〉.

Computing the addition of products D(Ω)D(Ω′) of displacement operators [44,
Eq. (1.10)] concludes the proof by using D†(Ω′) = D(−Ω′) and
Tr [ ρ′ D(Ω)ΠθD†(Ω)] = Tr [ ρD(Ω−Ω′)ΠθD†(Ω−Ω′)].

D.4 Proof of Property 4

First, we prove that the displacement operator is covariant under rotations,
i.e., U†

φD(Ω)Uφ = D(Ω−φ). This is conveniently shown in the coherent-state
representation as detailed in Eq. (9). Note that
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U†
φD(Ω)Uφ|0〉 = e−|α|2/2

∞∑

n=0

αn√
n!

U†
φ|n〉 = e−|α|2/2

∞∑

n=0

[exp (iφ)α]n√
n!

|n〉 = D(Ω−φ)|0〉,

where the eigenvalue equation U†
φ|n〉 = exp (inφ)|n〉 was used together with

its special case Uφ|0〉 = |0〉. It follows from (22) that

UφΠθU
†
φ = (4π�)−1

∫
Kθ(Ω)UφD(Ω)U†

φ dΩ = (4π�)−1

∫
Kθ(Ω)D(Ωφ) dΩ = Πθ

and the last equation is a consequence of the invariance Kθ(Ω) = Kθ(Ωφ).
Now, considering the density operators ρ and ρφ = UφρU†

φ, the traces can be
evaluated as

Tr[ρφD(Ω)ΠθD†(Ω)] = Tr[ρφD(Ω)UφΠθU
†
φD†(Ω)] = Tr[UφρU†

φD(Ω)UφΠθU
†
φD†(Ω)]

= Tr[ρU†
φD(Ω)UφΠθ (U†

φD(Ω)Uφ)†] = Tr[ρD(Ω−φ)ΠθD†(Ω−φ)],

which verifies that the displacement operator is covariant under rotations.
The diagonality of Πθ in the Fock basis can be shown as follows: If Kθ(Ω) is
invariant under rotations it must be a function of the polar radius in the phase
space, i.e., Kθ(Ω) = Kθ(|α|2). The matrix elements can be calculated via (10)
as

〈n|Πθ m〉 = (4π�)−1

∫
Kθ(|α|2) [D(α)]nm dΩ ∝

∫
αm−nf(|α|2) dΩ ∝ δnm

with f(|α|2) = Kθ(|α|2)e−|α|2/2L
(m−n)
n (|α|2), so the integral vanishes unless

n = m.

D.5 Proof of Property 5

The expectation value 〈ψn|D(Ω)ΠθD†(Ω)ψn〉 = 〈φn|Πθ φn〉 is real if Πθ is self-
adjoint, where the orthonormal bases {|ψn〉}n=0,1,... and {|φn〉}n=0,1,... of the
considered Hilbert space have been applied. Assuming K∗

θ (−Ω) = Kθ(Ω), this
translates to

Π†
θ = 1

4π�

∫
K∗

θ (Ω)D†(Ω) dΩ

= 1
4π�

∫
K∗

θ (Ω)D(−Ω)dΩ = 1
4π�

∫
Kθ(Ω)D(Ω) dΩ = Πθ.

D.6 Proof of Property 6

The phase-space integral
∫

Fρ(Ω, θ) dΩ = (π�)−1Tr [ ρ
∫

D(Ω)ΠθD†(Ω) dΩ]

= 2Tr{ ρFσ[D(·)ΠθD†(·)](Ω)|Ω=0} = Tr [ ρD(0)Kθ(0)] = Kθ(0)Tr(ρ)

is mapped to the trace of ρ if Kθ(0) = 1. The second equality applies the
symplectic Fourier transform of Eq. (29) at the point Ω = 0. Formally, the
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trace of Πθ is given by

Tr[Πθ] = (4π�)−1

∫
Kθ(Ω)Tr[D(Ω)] dΩ = (2)−1

∫
Kθ(Ω)δ(Ω) dΩ,

where we used Tr[D†(Ω)D(Ω′)] = 2π� δ(Ω−Ω′) [23]. Alternatively, this also
follows from (37) by formally computing the trace

Tr[Πθ] = (π�)−1Tr[OpWeyl(θ)] = (π�)−2

∫
θ(Ω)Tr[D(Ω)ΠD†(Ω)] dΩ,

where the trace of the Grossmann–Royer operator from (16) evaluates to
Tr[D(Ω)ΠD†(Ω)] = Tr[Π] = 1/2, refer to (6.38) and the following text in
[23]. Substituting its definition from (22), the trace of Πθ is computed as
Tr[Πθ] = (2π2

�
2)−1

∫
θ(Ω) dΩ = (π�)−1Fσ[θ(·)]|Ω=0 = K(0)/2.

E Proof of (40)

Due to Property 4, the parity operator is diagonal in the number-state repre-
sentation 〈m|Πs|n〉 ∝ δnm. Its diagonal elements can be calculated

[Πs]nn = (4π�)−1

∫
es|α|2/2 [D(Ω)]nn dΩ = (4π�)−1

∫
es|α|2/2 e−|α|2/2Ln(|α|2) dΩ

where (10) was used for [D(Ω)]nn. One applies the polar parametrization of
the complex plane via Ω = α = r exp (iφ) so that dΩ = 2� d�(α) d�(α) =
2� r dr dφ. Then,

[Πs]nn = (2π)−1

∫ 2π

0

dφ

∫ ∞

0

esr2/2 e−r2/2Ln(r2) r dr

= 1
2

∫ ∞

0

ey(s−1)/2Ln(y) dy = 1
2

∫ ∞

0

e−yey(s+1)/2Ln(y) dy,

where the second equality is due to r dr = dy/2 with y = r2 and the integral
with respect to φ results in the multiplication by 2π. The Laguerre polynomial
decomposition of the exponential function

e−γx =
∞∑

m=0

[γm/(1+γ)m+1]Lm(x)

with γ = −(s+1)/2 [83, p. 90] and the orthogonality relation
∫ ∞

0

e−xLn(x)Lm(x)dx = δnm

finally yield

[Πs]nn = γn/[2(1+γ)n+1] = (−1)n(s+1)n/(1−s)n+1,

which concludes the proof.
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F Spectral Decomposition of the Squeezing Operator

The eigenvectors from (48) are orthogonal and normalized in terms of the delta
function δ as detailed by

〈ψE1± |ψE2± 〉 =
∫

[ψE1± (x)]∗ ψE2± (x) dx = δ(E1−E2).

The integral can be calculated using a change of variables dx = ev dv with
v = ln(|x|). One obtains a complete basis

∫
[ψE

±(x)]∗ ψE
±(x′) dE = δ(x−x′),

by applying an integral of two different Fourier components indexed by x and
x′, refer to [26,27] for more details. The eigenfunctions ψE

±(x) are not square
integrable, but they can be decomposed into the number-state basis with finite
coefficients. The coefficients shrink to zero, but are not square summable.
The resulting integrals 〈n|ψE

±〉 can be specified in terms of a finite sum. In
particular, ψ0

+ = |x|−1/2/(2
√

π) has the largest eigenvalue. Its number-state
representation is given by

〈n|ψ0
+〉 = 1

2
√

π

n/2∑

k=0

π2−3k+n+ 1
4
√

n!
k!(n−2k)! Γ(k − n

2 + 3
4 )

if n mod 4 = 0,

where every fourth entry is nonzero and the entries decrease to zero for large
n.

G Matrix Representation of the Born–Jordan Parity Operator

The matrix elements of the parity operator can be computed via Theorem 3
as

[ΠBJ]mn = (4π�)−1

∫
KBJ(Ω) [D(Ω)]mn dΩ = (4π�)−1

∫
sinc( px

2�
) [D(α)]mn dx dp.

It is discussed in Sect. 3.1 that one can substitute α = (λx + iλ−1p)/
√

2�,
which results in the integral

[ΠBJ]mn = (4π�)−1

∫
sinc(px

2�
) {D[(λx + iλ−1p)/

√
2�]}mn dx dp.

Let us now apply a change of variables x �→ λ−1
√

�x and p �→ λ
√

�p, which
yields dx dp �→ �dx dp and the integral

[ΠBJ]mn = (4π)−1

∫
sinc(px

2 ) {D[(x+ip)/
√

2]}mn dx dp.

We now substitute the explicit form of [D(α)]mn with {D[(x+ip)/
√

2]}mn from
(10) and obtain

[ΠBJ]mn = (4π)−1
n∑

k=0

ck
mn

∫
sinc(px

2 ) [x+ip√
2

]m−ne−(x2+p2)/4(x2+p2)k dx dp,

(64)
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where the Laguerre polynomials are expanded using the new coefficients

ck
mn :=

√
n!
m! (−1)k2−k

(
m

n−k

)
/k!.

One applies the expansion

[x+ip√
2

]m−n = 2−(m−n)/2
m−n∑

�=0

(
m−n

�

)
xm−n−� (ip)�.

and the integral in (64) vanishes for odd powers of x and p due to symmetry of
the integrand. Therefore, all non-vanishing matrix elements have even m − n
values and the summations can be restricted to � ∈ {0, 2, 4, . . . ,m−n}. The
integral is also invariant under a permutation of x and p and certain terms
in the sum cancel each other out: Every term xm−n−� (ip)� in the sum has
a counterpart (ip)m−n−� x� which results in the same integral and these two
terms therefore cancel each other out after the integration if the condition
(i)� = −(i)m−n−� holds (which occurs unless m−n is a multiple of four). This
elementary argument shows that only matrix elements [ΠBJ]mn with m − n
multiples of four are nonzero. Recall that we have been using an indexing
scheme with m ≥ n on account of the Laguerre polynomials in (10), but
matrix elements with m < n are trivially obtained as [ΠBJ]mn = [ΠBJ]nm.
Introducing the coefficient [with i� = (−1)�/2]

wk
mn� := (−1)�/22−(m−n)/2

(
m−n

�

)
ck
mn

and denoting a = (m − n − �)/2 and b = �/2, one obtains

[ΠBJ]mn = (4π)−1
n∑

k=0

m−n∑

	=0
	 even

wk
mn	

∫
sinc( px

2
) x2a p2b (x2+p2)k e−(x2+p2)/4 dx dp.

(65)
The integral in (65) is simplified using new variables λ, μ ∈ [1 − ε, 1 + ε] for
some ε ∈ (0, 1/2) as

(∂k
μ[∂a

λ∂b
μe−(λx2+μp2)/4]|λ=μ)]|μ=1 = (−1)a+b+k4−(a+b+k)x2a p2b (x2+p2)k e−(x2+p2)/4

for all a, b, k ∈ N0 := {0, 1, . . .} and x, p ∈ R. Considering the mapping

g : R
2 × [1 − ε, 1 + ε]2 → R, (x, p, λ, μ) �→ sinc(px

2 ) e−(λx2+μp2)/4,

the corresponding partial derivatives can be bounded by

|sinc(px
2 )x2a p2b (x2+p2)k e−(λx2+μp2)/4| ≤ x2a p2b (x2+p2)k e−(x2+p2)/8

where the upper bound is independent of λ, μ and integrable as e−(x2+p2)/8 ∈
S(R2). We now may interchange the partial derivatives by a version of
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Lebesgue’s dominated convergence theorem [51, Thm. 2.27.b]. The integral
in (65) is then given by

(4π)−1

∫
sinc(px

2 )x2a p2b (x2+p2)k e−(x2+p2)/4 dx dp

= (−1)a+b+k4a+b+k[(∂k
μ[∂a

λ∂b
μf(λ, μ)]|λ=μ)]|μ=1,

where

f(λ, μ) = (4π)−1

∫
sinc(px

2 ) e−(λx2+μp2)/4 dx dp = arcsinh[(λμ)−1/2].

Note that λ now denotes the variable of the function f(λ, μ) and should not
be confused with the scaling parameter α = (λx + iλ−1p)/

√
2� from Sect. 3.1,

which has also been used in the beginning of this section. This finally results
in

[ΠBJ]mn =

n∑

k=0

m−n∑

	=0
	 even

wk
mn	(−1)k+(m−n)/24k+(m−n)/2(∂k

μ{[∂a
λ∂b

μf(λ, μ)]|λ=μ})|μ=1.

H Calculating Derivatives for the Sum in Theorem 6

The derivatives Φk
ab = [∂k

μ[∂a
λ∂b

μf(λ, μ)]|λ=μ]|μ=1 of the function (cf. (52))

f : (0,∞) × (0,∞) → R, (λ, μ) �→ arcsinh[1/
√

λμ]

can be computed recursively. Note that, obviously, f is smooth. The inner
derivative of Φk

ab gives rise to the following lemma.

Lemma 5. Let any a, b ∈ N0 := {0, 1, . . .} with a+b ≥ 1 (else we are not taking
any derivative). Then,

∂a
λ∂b

μf(λ, μ) =

∑a+b−1
j=0 cab

j λj−bμj−a

(−2)a+b(
√

λμ+1)2(a+b)−1
(66)

where the coefficients cab
j are defined recursively by

cab
j =

⎧
⎪⎨

⎪⎩

cab
j = 0 if j < 0 or j ≥ a + b

c1 0
0 = 1

ca+1,b
j = cab

j−1(4a + 2b + 1 − 2j) − 2 cab
j (j−a)

and have the symmetry cab
j = cba

j .

Proof. Note that the symmetry of the cab
j holds due to Schwarz’s theorem

[105, pp. 235–236] as f is smooth. Then, this statement is readily verified
via induction over n = a + b. First, n = 1 corresponds to a = 1, b = 0 so
∂μarcsinh[(λμ)−1/2] = 1/(−2μ

√
λμ+1) which reproduces (66). For n �→ n + 1

it is enough to consider (a, b) �→ (a+1, b) due to the stated symmetry. The key
result here is that

∂μ
μj−a

(
√

λμ+1)2(a+b)−1
=

μj−a−1

2(
√

λμ+1)2(a+b)+1
[λμ(2j − 4a − 2b + 1) + 2(j−a)]
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which is readily verified. Straightforward calculations conclude the proof. �

For a + b ≥ 1, the above result immediately yields

Φk
ab = ∂k

μ

⎡

⎢⎣
∑a+b−1

j=0 cab
j μ2j−b−a

(−2)a+b
(√

μ2+1
)2(a+b)−1

⎤

⎥⎦ |μ=1.

Now, the cab
j are used to initialize the recursion of the coefficients ξabk

j for
a + b ≥ 1, the sum of which determines the resulting derivatives as we will see
now.

Lemma 6. Let any a, b, k ∈ N0 with a + b + k ≥ 1. Then

∂k
μ[∂a

λ∂b
μf(λ, μ)]|λ=μ] =

∑a+b+k−1
j=0 ξabk

j μ2j

(−2)a+bμa+b+k(
√

μ2+1)2(a+b+k)−1
(67)

where the coefficients ξabk
j have the symmetry ξabk

j = ξbak
j and are defined by

ξabk
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξabk
j = 0 if j < 0 or j ≥ a + b + k

ξ0 0 1
0 = −1

ξab 0
j = cab

j if a + b ≥ 1
ξab,k+1
j = ξabk

j−1(2j − 1 − 3a − 3b − 3k) + ξabk
j (2j − a − b − k).

(68)

Proof. The key result here is

∂μ
μ2j−β

(
√

1+μ2)2β−1
=

μ2j−β−1

(
√

1+μ2)2β+1
[μ2(2j − 3β + 1) + (2j−β)] (69)

for any β, j ∈ N which can be easily seen. We have to distinguish the cases
a + b = 0 and a + b ≥ 1. First, let a + b = 0 so a = 0, b = 0 and the expression
in question boils down to

∂k
μf(μ, μ) = ∂k

μarcsinh[μ−1] =

∑k−1
j=0 ξ00k

j μ2j−k

(
√

1+μ2)2k−1

as can be shown via induction over k ∈ N. Here, setting β = k in (69) yields

ξ00,k+1
j = ξ00k

j−1(2j − 1 − 3k) + ξ00k
j (2j−k)

which recovers the recursion formula of ξabk
j for a = 0 and b = 0. Now, assume

a+b ≥ 1 such that we can carry out the proof via induction over k ∈ N0 (where
k = 0 is obvious as it is simply Lemma 5). Using (69) in the inductive step
for β = a + b + k recovers the recursion formula of the ξabk

j by straightforward
computations. �
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Finally, evaluating (67) at μ = 1 for any a, b, k ∈ N0 with a + b + k ≥ 1
readily implies Eq. (53).

I Proof of Proposition 3

The proof which is given below was informed by a discussion on MathOver-
flow [117], and its idea was provided GH and M. Alekseyev. We consider the
generating function of the entries [ΠBJ]nn.

Lemma 7. For all |t| < 1, one has
∞∑

n=0

[ΠBJ]nntn =
1

1 − t
arcsinh

(1−t

1+t

)

where

[ΠBJ]nn =
n∑

k=0

(
n

k

)
2kck

k!
and cn =

dn

dxn
arcsinh

( 1
x

)∣∣∣
x=1

for all n ∈ N0.

Proof. Obviously, arcsinh(1/w) =
∑∞

n=0(ck/k!)(w−1)k for all |w−1| < 1, so
changing w to 1 + 2w yields

arcsinh
( 1

1+2w

)
=

∞∑

n=0

2kck

k!
wk (70)

for all |w| < 1/2. By the generalized Leibniz rule,

[wn](1+w)n arcsinh
( 1

1+2w

)
=

1
n!

dn

dwn
(1+w)n arcsinh

( 1
1+2w

)∣∣∣
w=0

=
1
n!

n∑

k=0

(
n

k

)
dk

dwk
arcsinh

( 1
1+2w

)∣∣∣
w=0︸ ︷︷ ︸

=2kck by (70)

dn−k

dwn−k
(1+w)n

∣∣∣
w=0︸ ︷︷ ︸

=n!/k!

=
n∑

k=0

(
n

k

)
2kck

k!
= [ΠBJ]nn (71)

for all n ∈ N0. Here, [tn]g(t) = g(n)(0)/n! denotes the nth coefficient in the
Taylor series of g(t) around 0. Now, we apply the Lagrange–Bürmann formula
[2, 3.6.6] to φ(w) = 1 + w [so w/φ(w) = t for |t| < 1 has the unique solution
w = t/(1−t)] and H(w) = (1+w) arcsinh[1/(1+2w)] which concludes the proof
via

[tn]
1

1−t
arcsinh

(1−t

1+t

)
= [tn]H

( t

1−t

)
= [wn]H(w)φ(w)n−1[φ(w) − wφ′(w)]

= [wn](1+w)n arcsinh
( 1

1+2w

)
(71)
= [ΠBJ]nn.

�
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Lemma 8. The following sum converges:

∞∑

k=0

(−1)k

k+1

� k
2 �∑

m=0

(
2m

m

)(−1
4

)m

(72)

Proof. For arbitrary k ∈ {0, 1, 2, . . .}, we define

bk := (−1)k

� k
2 �∑

m=0

(
2m

m

)(−1
4

)m

.

Due to the summation limit �k
2 �, one has b2k = −b2k+1 for all k ∈ {0, 1, 2, . . .}

and thus
( n∑

k=0

bk

)

n=0,1,2,...
= (b0, 0, b2, 0, b4, 0, . . .).

Therefore, (
∑n

k=0 bk)n=0,1,2,... consists of the null sequence and (b2n)n=0,1,2,...,
so it is bounded due to

lim
n→∞ b2n =

∞∑

m=0

(
2m

m

)
(−1/4)m = 1/

√
2.

In total, (72) then converges due to Dirichlet’s test [67, p. 328]. �

With these intermediate results, we can finally prove the proposition in
question.

Proof of Proposition 3. Again using the generalized Leibniz rule, Lemma 7
yields that

[ΠBJ]nn = [tn]
1

1−t
arcsinh

(1−t

1+t

)
=

1
n!

dn

dtn
1

1−t
arcsinh

(1−t

1+t

)∣∣∣
t=0

=
1
n!

n∑

k=0

(
n
k

)
dk

dtk
arcsinh

(1−t

1+t

)∣∣∣
t=0

dn−k

dtn−k

1
1−t

∣∣∣
t=0︸ ︷︷ ︸

=(n−k)!

= arcsinh(1) +
n∑

k=1

1
k!

dk

dtk
arcsinh

(1−t

1+t

)∣∣∣
t=0

holds for any n ∈ N0. It follows that

d

dt
arcsinh

(1−t

1+t

)
=

−
√

2
(1+t)

√
1+t2

= −
√

2
[ ∞∑

m=0

(−t)m
][ ∞∑

m=0

(
−1/2

m

)

︸ ︷︷ ︸

=
(

−1
4

)m(2m
m

)

t2m
]

= −
√

2
∞∑

m=0

[ m∑

n=0

(−t)m−n

(
2n
n

)(−1
4

)n

t2n
]

= −
√

2
∞∑

m=0

(−1)mtm
m∑

n=0

(
2n
n

)( t

4

)n
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for any |t| < 1 by taking the Cauchy product. Thus, the kth derivative of
arcsinh[(1−t)/(1+t)] at t = 0 only consists of the coefficients with exponent
n + m = k − 1 of t. Explicitly,

dk

dtk
arcsinh

(1−t

1+t

)∣∣∣
t=0

= −
√

2
dk−1

dtk−1
tk−1

∣∣∣
t=0︸ ︷︷ ︸

=(k−1)!

∞∑

m=0
0≤k−m−1≤m

(−1)m

(
2k − 2m − 2
k − m − 1

)(1
4

)k−m−1

for all k ∈ N as n ∈ {0, . . . , m}. The condition 0 ≤ k − m − 1 ≤ m translates
to m ≤ k − 1 ≤ 2m, so (k−1)/2 ≤ m ≤ k − 1 and thus

dk

dtk
arcsinh

(1−t

1+t

)∣∣∣
t=0

= −
√

2(k−1)!
k−1∑

m=� 1
2 (k−1)�

(−1)m

(
2k − 2m − 2
k − m − 1

)(1
4

)k−m−1

=
√

2(−1)k(k−1)!
� 1
2 (k−1)�∑

m=0

(−1)m

(
2m

m

)(1
4

)m

,

where the second equality follows by substituting m with k − 1−m. One then
obtains

[ΠBJ]nn = arcsinh(1) +
n∑

k=1

1
k!

dk

dtk
arcsinh

(1−t

1+t

)∣∣∣
t=0

= arcsinh(1) +
√

2
n∑

k=1

(−1)k

k

� 1
2 (k−1)�∑

m=0

(
2m

m

)(−1
4

)m

.

To get (54), we shift k to k + 1. Due to (54) and Lemma 8, the limit
limn→∞[ΠBJ]nn exists. Now, consider arcsinh[(1−t)/(1+t)] and its Taylor se-
ries

∑∞
k=0 aktk around t0 = 0 for any |t| < 1. By Lemma 7,

∞∑

k=0

aktk = arcsinh
(1−t

1+t

)
= (1−t)

1
1−t

arcsinh
(1−t

1+t

)
=

∞∑

n=0

[ΠBJ]nn(1−t)tn

= [ΠBJ]00 +
∞∑

n=1

([ΠBJ]nn − [ΠBJ](n−1)(n−1))tn,

thus one obtains
∑n

k=0 ak = [ΠBJ]nn for any n ∈ N0. By Lemma 8,∑∞
k=0 ak = limn→∞[ΠBJ]nn exists so Abel’s theorem [67, Th. 8.2] yields

limn→∞[ΠBJ]nn =
∑∞

k=0 ak = limt→1− arcsinh[(1−t)/(1+t)] = arcsinh(0) = 0
as claimed. �
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J Direct Recursive Calculation of the Matrix Elements

The nonzero matrix elements are defined by a set of rational numbers

Mk� := [ΠBJ]k+4�,k/(Γk�) − δ�0arcsinh(1)/
√

2, (73)

where the indexing k, � ∈ {0, 1, 2, . . . } is now relative to the diagonal (where
� = 0) and Γk� := γk+4�,k = 2−4�+1/2

√
k!/(k+4�)!. Here, δnm is the Kronecker

delta and note the symmetry [ΠBJ]k,k+4� = [ΠBJ]k+4�,k. For example, the
values Mk0 define the diagonal of the Born–Jordan parity operator [ΠBJ]kk

up to the constants Γk0 =
√

2 and arcsinh(1)/
√

2, compare to Fig. 1. These
rational numbers appear to satisfy the following recursive relations

Mk+4,	 = 1
k+4

Mk+3,	 + 4	+2k+5
(k+3)(k+4)

Mk+2,	 + 4	+k+2
(k+3)(k+4)

Mk+1,	 + (4	+k+1)(4	+k+2)
(k+3)(k+4)

Mk	,

i.e., each element in a column is determined by the previous four values. Calcu-
lating a column requires, however, the first four elements M0�,M1�,M2�,M3�

as initial conditions. Surprisingly, the first four rows appear to satisfy the
following recursive relations

M0,�+2 = 4[(27 + 56� + 32�2)M0,�+1 − 16�(1+4�)(2+4�)(3+4�)M0�]

M1,�+2 = 4[(39 + 72� + 32�2)M1,�+1 − 16�(2+4�)(3+4�)(5+4�)M1�]

M2,�+2 = 4[(55 + 88� + 32�2)M2,�+1 − 16�(3+4�)(5+4�)(6+4�)M2�]

M3,�+2 = 4[(75 + 104� + 32�2)M3,�+1 − 16�(5+4�)(6+4�)(7+4�)M3�].

Ultimately, eight initial values M0,0 = 0, M0,1 = 4, M1,0 = −1, M1,1 = −8,
M2,0 = −1/2, M2,1 = 6, M3,0 = −2/3, and M3,1 = −4 appear to determine the
Born–Jordan parity operator via the above recursion relations for the elements
Mk�.
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