dc.contributor.author
Majewski, Maciej
dc.contributor.author
Pérez, Adrià
dc.contributor.author
Thölke, Philipp
dc.contributor.author
Doerr, Stefan
dc.contributor.author
Charron, Nicholas
dc.contributor.author
Giorgino, Toni
dc.contributor.author
Husic, Brooke Elena
dc.contributor.author
Clementi, Cecilia
dc.contributor.author
Noe, Frank
dc.contributor.author
De Fabritiis, Gianni
dc.date.accessioned
2024-03-06T13:10:20Z
dc.date.available
2024-03-06T13:10:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42539
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42263
dc.description.abstract
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en
dc.subject
Molecular dynamics
en
dc.subject
Molecular modelling
en
dc.subject
Protein analysis
en
dc.subject
Protein function predictions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Machine learning coarse-grained potentials of protein thermodynamics
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97196
dcterms.bibliographicCitation.articlenumber
5739
dcterms.bibliographicCitation.doi
10.1038/s41467-023-41343-1
dcterms.bibliographicCitation.journaltitle
Nature communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Nature Publishing Group UK
dcterms.bibliographicCitation.originalpublisherplace
London
dcterms.bibliographicCitation.volume
14 (2023)
dcterms.bibliographicCitation.url
https://www.nature.com/articles/s41467-023-41343-1
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723