High-order harmonic generation (HHG) normally requires a careful adjustment of the driving laser intensity (typically 1014–1015 W/cm2) and gas medium parameters to obtain a microscopically and macroscopically optimized output. In contrast to conventional wisdom, we present experimental results indicating efficient HHG in all rare gases, using a high-density medium and a driving laser intensity of around 1016 W/cm2. The experimental results are corroborated by theoretical simulations, which indicate that ionization-induced self-phase modulation and plasma defocusing self-regulate the driver laser intensity to a level that allows efficient HHG. A tenfold broadening of the driving near-infrared spectrum is observed, which results in the generation of continuous spectra from 18 to 140 eV in spite of using 50-fs-long driving pulses. The presented scheme represents a simple and versatile concept for the generation of extreme-ultraviolet and soft-x-ray continua, which could be used for transient absorption and reflection spectroscopy.