The adsorption of organic electron acceptors on metal surfaces is a powerful way to change the effective work function of the substrate through the formation of charge-transfer-induced dipoles. The work function of the interfaces is hence controlled by the redistribution of charges upon adsorption of the organic layer, which depends not only on the electron affinity of the organic material but also on the adsorption geometry. As shown in this work, the latter dependence controls the work function also in the case of adsorbate layers exhibiting a mixture of various adsorption geometries. Based on a combined experimental (core-level and infrared spectroscopy) and theoretical (density functional theory) study for tetracyanoethylene (TCNE) on Cu(111), we find that TCNE adsorbs in at least three different orientations, depending on TCNE coverage. At low coverage, flat lying TCNE dominates, as it possesses the highest adsorption energy. At a higher coverage, additionally, two different standing orientations are found. This is accompanied by a large increase in the work function of almost 3 eV at full monolayer coverage. Our results suggest that the large increase in work function is mainly due to the surface dipole of the free CN groups of the standing molecules and less dependent on the charge-transfer dipole of the differently oriented and charged molecules. This, in turn, opens new opportunities to control the work function of interfaces, e.g., by synthetic modification of the adsorbates, which may allow one to alter the adsorption geometries of the molecules as well as their contributions to the interface dipoles and, hence, the work function.