dc.contributor.author
Schätzle, Zeno
dc.contributor.author
Szabo, Peter Bernat
dc.contributor.author
Mezera, Matej
dc.contributor.author
Hermann, Jan
dc.contributor.author
Noe, Frank
dc.date.accessioned
2024-02-02T12:26:50Z
dc.date.available
2024-02-02T12:26:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42283
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42009
dc.description.abstract
Computing accurate yet efficient approximations to the solutions of the electronic Schrödinger equation has been a paramount challenge of computational chemistry for decades. Quantum Monte Carlo methods are a promising avenue of development as their core algorithm exhibits a number of favorable properties: it is highly parallel and scales favorably with the considered system size, with an accuracy that is limited only by the choice of the wave function Ansatz. The recently introduced machine-learned parametrizations of quantum Monte Carlo Ansätze rely on the efficiency of neural networks as universal function approximators to achieve state of the art accuracy on a variety of molecular systems. With interest in the field growing rapidly, there is a clear need for easy to use, modular, and extendable software libraries facilitating the development and adoption of this new class of methods. In this contribution, the DeepQMC program package is introduced, in an attempt to provide a common framework for future investigations by unifying many of the currently available deep-learning quantum Monte Carlo architectures. Furthermore, the manuscript provides a brief introduction to the methodology of variational quantum Monte Carlo in real space, highlights some technical challenges of optimizing neural network wave functions, and presents example black-box applications of the program package. We thereby intend to make this novel field accessible to a broader class of practitioners from both the quantum chemistry and the machine learning communities.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
open-source software
en
dc.subject
deep-learning molecular wave functions
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::005 Computerprogrammierung, Programme, Daten
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
DeepQMC: An open-source software suite for variational optimization of deep-learning molecular wave functions
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
96719
dcterms.bibliographicCitation.articlenumber
094108
dcterms.bibliographicCitation.doi
10.1063/5.0157512
dcterms.bibliographicCitation.journaltitle
The Journal of Chemical Physics
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics (AIP)
dcterms.bibliographicCitation.originalpublisherplace
Melville, NY
dcterms.bibliographicCitation.volume
159
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0157512
refubium.affiliation
Mathematik und Informatik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7690