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ABSTRACT
Computing accurate yet efficient approximations to the solutions of the electronic Schrödinger equation has been a paramount challenge of
computational chemistry for decades. Quantum Monte Carlo methods are a promising avenue of development as their core algorithm exhibits
a number of favorable properties: it is highly parallel and scales favorably with the considered system size, with an accuracy that is limited only
by the choice of the wave function Ansatz. The recently introduced machine-learned parametrizations of quantum Monte Carlo Ansätze rely
on the efficiency of neural networks as universal function approximators to achieve state of the art accuracy on a variety of molecular systems.
With interest in the field growing rapidly, there is a clear need for easy to use, modular, and extendable software libraries facilitating the
development and adoption of this new class of methods. In this contribution, the DEEPQMC program package is introduced, in an attempt
to provide a common framework for future investigations by unifying many of the currently available deep-learning quantum Monte Carlo
architectures. Furthermore, the manuscript provides a brief introduction to the methodology of variational quantum Monte Carlo in real
space, highlights some technical challenges of optimizing neural network wave functions, and presents example black-box applications of the
program package. We thereby intend to make this novel field accessible to a broader class of practitioners from both the quantum chemistry
and the machine learning communities.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0157512

I. INTRODUCTION

Recently, the application of machine learning to a wide range of
problems from the natural sciences has proven to be highly success-
ful. Computational chemistry is a field of particular activity: machine
learning force fields model complicated quantum mechanical effects
at the resolution of atoms, while machine learned functionals ele-
vate density functional theory to unprecedented accuracy.1–3 These
approaches utilize supervised training to learn from accurate quan-
tum mechanical reference calculations and make predictions for
unseen configurations. While this results in fast yet accurate approx-
imations to the quantum many-body problem, it inherently depends
on high quality training data, which represents a major bottleneck of
these methods.

An orthogonal way to incorporate machine learning into com-
putational chemistry is its application to improve ab initio calcu-
lations. Notably, over the course of the past years, a new family
of deep-learning quantum Monte Carlo (deep QMC) methods has
developed, incorporating advancements from the field of machine
learning.4 Common to the deep QMC methods is the utilization
of neural networks to parameterize highly expressive Ansätze, effi-
ciently approximating the solutions of the time-independent elec-
tronic Schrödinger equation, thereby providing a complete descrip-
tion of the system’s electronic properties. Originating from spin
lattices,5 deep-learning Ansätze were soon applied to molecules in
real-space.6 With the development of PauliNet7 and FermiNet,8 the
accuracy of neural-network wave functions became the state of the
art within variational Monte Carlo. Subsequent studies have fur-
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ther increased the accuracy of these Ansätze,9–12 extended them to
the simulation of excited states13 as well as periodic systems,14,15

combined them with pseudopotentials,16 used them in the calcula-
tion of interatomic forces,17 utilized them in diffusion Monte Carlo
simulations,18,19 and extended them to share parameters across
multiple molecular geometries20–22 or distinct molecules.23,24

Although the method of optimizing deep-learning wave func-
tion Ansätze using variational quantum Monte Carlo was developed
only a few years ago, it already competes with some of the most accu-
rate traditional quantum chemistry methods on molecules with up
to ∼100 electrons. Exhibiting competitive scaling with the number
of electrons, it has the potential to be extended to larger systems in
the near future. Achieving this will no doubt require further method
development as well as efficient implementations of the core algo-
rithms, creating the need for open source libraries that facilitate
experimentation and contribution from the community.

Accompanying the above-summarized research, various soft-
ware libraries for variational optimization of deep-learning wave
functions have been released.25–28 While NETKET25 provides a gen-
eral implementation of variational optimization of machine learning
wave functions mainly for lattice systems with recent extensions
to continuous space, the research for molecular machine learning
wave functions was carried out across various repositories and is
lacking a unified framework. The presented DEEPQMC program
package aims to provide a unified implementation of the develop-
ments in the field of deep-learning molecular wave functions. It
intends to be easy to use out of the box while allowing full control
and flexibility over the Ansatz and variational training for advanced
users. The library is designed to be modular, facilitating the rapid
development and testing of individual components, and easing the
implementation of new features. It makes use of the composable
function transformations and just-in-time compilation provided
by the JAX library29 to express performant GPU accelerated algo-
rithms using concise Python30 syntax. Neural network models are
encapsulated in higher-level objects, using the haiku deep-learning
library.31 The project is open-source and distributed online under
the MIT license.26

II. THEORY
A. The electronic structure problem

In computational chemistry, molecular systems are often
described by the non-relativistic molecular Hamiltonian using the
Born–Oppenheimer approximation,

Ĥ =
N

∑

i=1

⎛

⎝

−
1
2
Δri −

M

∑

I=1

ZI

∣ri − RI ∣
+

i−1

∑

j=1

1
∣ri − r j ∣

⎞

⎠

, (1)

where ri denotes the position of the ith electron, while ZI and RI are
the charge and position of the Ith nucleus, respectively. To deter-
mine the electronic structure of these molecular systems, one must
solve the associated time independent Schrödinger equation,

Ĥψ(x1, . . . , xN) = Eψ(x1, . . . , xN), (2)

where xi = (ri, σi) comprise the positions of the electrons and their
spin. A solution is an eigenfunction of the Hamiltonian, the elec-
tronic wave function ψ, and its corresponding energy eigenvalue

E. With the exact wave function at hand, any observable electronic
property of the system can, in principle, be computed, as the wave
function gives a complete description of the system’s electronic state.
Since electrons have half-integer spin, their wave functions must be
antisymmetric with respect to electron exchanges,

ψ(. . . , xi, . . . , x j , . . .) = −ψ(. . . , x j , . . . , xi, . . .). (3)

While general wave functions are complex-valued, the solutions of
the time independent Schrödinger equation can be chosen as real
without loss of generality, due to the hermiticity of the molecular
Hamiltonian. Therefore, in all of the following discussions, as well
as in the DEEPQMC library, only real valued wave functions are
considered.

B. Variational optimization
Even with the aforementioned approximations, the electronic

Schrödinger equation involving the molecular Hamiltonian can only
be solved analytically for hydrogenic atoms—the special case of the
two-body problem. This makes computational quantum chemistry
a mainly numerical field, where different methods yield approxi-
mate solutions at varying trade-offs of accuracy and computational
cost. The class of variational quantum chemistry methods phrases
the solution of the Schrödinger equation as a minimization problem.
The ground state of the Hamiltonian is approximated by optimizing
the parameters θ of a trial wave function (Ansatz) ψθ, to minimize
the expectation value of the Hamiltonian

θ′ = arg min
θ
⟨Ĥ⟩ψθ. (4)

This objective is rooted in the variational principle of quantum
mechanics, which states that the ground state energy of the Hamil-
tonian is a lower bound for the energy expectation value of any wave
function from the associated antisymmetric Hilbert space H−,

E0 ≤ min
ψ
⟨Ĥ⟩ψ ψ ∈ H−. (5)

The variational methods can be categorized based on the means of
calculating the expectation value ⟨⋅⟩, and choice of Ansatz ψθ.

The DEEPQMC program package implements VMC in real
space (first quantization) with neural network wave functions.
In VMC, expectation values are estimated through a stochastic
sampling of electron configurations,

⟨Ĥ⟩ψθ =
⟨ψθ∣Ĥ∣ψθ⟩
⟨ψθ∣ψθ⟩

=
∫ dr1, . . . , drNψ∗θ (r1, . . . , rN)Ĥψθ(r1, . . . , rN)

∫ dr1, . . . , drN ∣ψθ(r1, . . . , rN)∣
2

=
∫ dr1, . . . , drN ∣ψθ(r1, . . . , rN)∣

2Eloc[ψθ](r)
∫ dr1, . . . , drN ∣ψθ(r1, . . . , rN)∣

2

= Er∼∣ψθ ∣2[Eloc[ψθ](r)]

≈
1
n

n

∑

r∼∣ψθ ∣2
Eloc[ψθ](r). (6)

Because the molecular Hamiltonian does not depend on the spin,
it is possible to compute the energy using the spatial wave function
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ψ(r1, . . . , rN), where fixed spins are assigned to the electrons and
spin-up and spin-down electrons are treated as distinguishable.32

The convention is to sort the electrons by spin and consider the
first N↑ electrons to have spin-up and the remaining N↓ = N −N↑

electrons to possess spin-down.
In practice, a VMC simulation then consists of choosing an

Ansatz (see Sec. III) and optimizing it in an alternating scheme
of sampling and parameter updates. The expectation value in
Eq. (6) is approximated by sampling the probability density given
by the square of the wave function (see Sec. V), followed by a
parameter update using the gradient of the expectation value
(see Sec. IV).

C. Neural network wave functions
Being exact in principle, the choice of the wave function Ansatz

is crucial for the efficiency of a VMC simulation. Recently, neural
network parametrizations of real-space molecular wave functions
have been introduced by PauliNet7 and FermiNet.8 They both rely
on generalized Slater determinants, which augment the single par-
ticle orbitals of conventional Slater determinants with many-body
correlation,

ψθ(r1, . . . , rN) =∑p cp det [Ap
(r)], (7)

Ap
ik = ϕ

p
k(ri,{r↑},{r↓}) × φp

k(ri), (8)

where ϕp
k are many-body orbitals and φp

k are single particle envelopes
that ensure the correct asymptotic behavior of the wave function
with increasing distance from the nuclei. The set notation {⋅} is
to be understood as a permutation invariant dependence on the
spin-up electrons r↑ and spin-down electrons r↓, respectively. The
Ansatz may be a linear combination of multiple generalized Slater
determinants, which are distinguished with the p index. The form
of ϕp

k in Eq. (8) is closely related to the backflow transformation,33

which introduces quasi-particles to obtain many-body orbital func-
tions. The key observation motivating this augmentation is that the
antisymmetry of Slater determinants constructed from many-body
orbitals is preserved as long as the orbital functions are equivariant
with the exchange of electrons,

P∥ijϕk(ri,{r↑},{r↓}) = ϕk(r j ,{r↑},{r↓}), (9)

where P∥ij is the operator exchanging same-spin electrons i and j.
Most of the currently used deep-learning molecular wave

functions7,8,11 share the functional form of Eqs. (7) and (8) and dif-
fer only in the parametrization of the many-body orbitals ϕp

k and
single-particle envelopes φp

k. DEEPQMC aims to provide a general
framework for variational optimization of deep-learning molecu-
lar wave functions, facilitating the investigation of the design space
spanned by the PauliNet, FermiNet, and DeepErwin neural network
Ansätze.

D. Pseudopotentials
Despite the favorable asymptotic scaling of VMC with the num-

ber of electrons, systems containing heavy nuclei remain challenging
due to a variety of reasons. The high energy of electrons near these

nuclei complicates simulations by spoiling the optimization and
reducing the effectiveness of Markov chain Monte Carlo (MCMC)
sampling. Furthermore, the kinetic energy of these electrons reaches
the relativistic regime, requiring the treatment of relativistic effects
that are not accounted for in the standard non-relativistic molec-
ular Hamiltonian of Eq. (1). On the other hand, while the core
regions of heavily charged nuclei contribute dominantly to the total
energy, they are typically unchanged during chemical processes and
thus have little effect on the chemically relevant relative energies.
Therefore, most quantum chemistry methods targeted at computing
relative energies reduce the above-outlined difficulties, by treat-
ing the outer (valence) electrons separately from the inner (core)
electrons.

The approach most suited for implementation in the context
of variational optimization of deep-learning wave functions is the
use of pseudopotentials, which has previously been demonstrated by
Li et al.16 In this method, the core electrons are excluded from the
explicit calculation and replaced by additional terms in the Hamil-
tonian, to simulate their influence on the remaining Nv valence
electrons. The modified Hamiltonian reads

Ĥ =
Nv

∑

i=1

⎛

⎝

−
1
2
Δri +

i−1

∑

j=1

1
∣ri − r j ∣

⎞

⎠

+ V̂PP. (10)

The V̂PP pseudopotential term is, in turn, decomposed to local and
non-local parts,

V̂PP =
M

∑

I=1

Nv

∑

i=1

⎛

⎝

V I
(riI) +

lmax

∑

l=0
WI

l (riI)P̂iI
l
⎞

⎠

, (11)

where riI = ∣ri − RI ∣, V I and WI
l are sets of scalar functions describ-

ing the local and non-local pseudopotential contributions, while
P̂iI

l = ∑
m=l
m=−l ∣lm⟩iI⟨lm∣iI is a projection operator of the ith electron

on spherical harmonics centered on the Ith nucleus. To evaluate the
contribution of the non-local part of the pseudopotential [second
term of Eq. (11)], one considers integrals of the form

⟨r∣WI
l P̂iI

l ∣ψ⟩
⟨r∣ψ⟩

=WI
l (riI)

l

∑

m=−l
Ylm(ΩiI)

× ∫ Ylm(Ω
′
iI)
∗ ψ(r1, . . . , (riI ,Ω′iI), . . . , rNv)

ψ(r1, . . . , (riI ,ΩiI), . . . , rNv)
dΩ′iI ,

(12)

where Y lm is a spherical harmonic and (riI ,ΩiI) denotes the position
vector of the ith electron ri, expressed in spherical coordinates cen-
tered on nucleus I. Following the first implementation of pseudopo-
tentials for deep-learning molecular wave functions by Li et al.,16 the
above integral is approximated using an icosahedral quadrature of
12-points.

The scalar functions V I and WI
l are typically pre-computed by

expanding them in a Gaussian basis and fitting the expansion para-
meters directly to a database of reference energies. The DEEPQMC
program package currently includes the widely used BFD34 and the
most recent ccECP35 pseudopotentials, with an application of the
latter presented in Sec. VIII B.
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FIG. 1. Sketch of a general neural network wave function Ansatz and its graph neural network architecture. This sketch comprises the implemented design space for the
neural network wave function (left) and the GNN architecture (right). The solid lines can carry MLPs, and the dotted lines correspond to forwarding without further change.
The numbers in parentheses refer to the corresponding equations of the main text. The choice among the drawn connections, the depths of the associated MLPs, and the
aggregation and update rules distinguish the previously published PauliNet, FermiNet, and DeepErwin.

III. WAVE FUNCTION DESIGN SPACE
DEEPQMC implements a variety of options to obtain the equiv-

ariant many-body orbitals ϕp
k and the accompanying envelopes φp

k,
covering PauliNet, FermiNet, DeepErwin, and their derivatives. In
the following, the main architectural concepts of these wave function
Ansätze will be described in more detail. For ease of use, DEEP-
QMC provides predefined configuration files to obtain the above-
mentioned Ansätze while allowing their interpolation through a
manual choice of hyperparameters.

A. Graph neural networks
Central to the neural network wave function Ansätze is the

computation of equivariant many-body embedding vectors for the
electrons, which are used downstream to obtain the entries of the
generalized Slater determinant. Many strategies of obtaining these
embeddings can be unified in the framework of graph neural net-
works (GNNs). GNNs are well suited to model functions on graphs
that exhibit certain permutational symmetries and can be adapted to
describe electrons of molecules in real-space.

An electronic configuration of a molecule can be encoded as
a graph, where the nodes are electrons and nuclei and the con-
necting edges carry pairwise features, e.g., difference vectors. GNNs
are functions of these graphs, yielding high-dimensional latent
space embeddings of the nodes. The electronic node embeddings
are initialized with single-electron features and iteratively updated
to incorporate many-body information of the electronic environ-
ment. Using graph convolutions, the updates are invariant under
the exchange of electrons in the environment and the conditions of
Eq. (9) are fulfilled.

The most relevant aspects of the GNN architecture imple-
mented in DEEPQMC are sketched on the right pane of Fig. 1 and
are discussed in detail in the following. Electron positions (spins)
are denoted with r (σ), while R and Z indicate nuclei positions and
charges. Node and edge quantities are denoted with the superscripts
(n) and (e), respectively. Furthermore, l indexes the GNN interac-
tion layers, θ denotes functions parameterized by MLPs, and t runs
over the different edge types (those between electrons of identical or

opposite spins, or between electrons and nuclei), node types (elec-
tron or nuclei nodes), or message types. Finally, vertical brackets
indicate the different options implemented in DEEPQMC for the
computation of various quantities.

1. The graph representation
A graph is a natural way to denote the electronic configuration

of a molecule in real-space. The nodes of the graph represent par-
ticles (electrons and nuclei), carrying information such as spin or
nuclear charge. The edges support the difference vectors between the
particles, resulting in a representation invariant under global trans-
lation. Note that using internal coordinates that are invariant under
global rotation may not be sufficient to represent all wave functions
(simple counterexamples are atomic wave functions with P symme-
try) and can only be employed with a careful treatment of the spatial
symmetries.

To implement a variety of wave function Ansätze, DEEPQMC
provides configuration options to define the specifics of the graph
construction outlined above. Most importantly, the nodes corre-
sponding to nuclei and their respective nuclei–electron edges can
optionally be excluded from the graph. In this case, electron–nuclei
information can still be introduced to the GNN, by initializing the
electron embeddings using a concatenation of the difference vectors
between the positions of the given electron and all nuclei [see the
second case of Eq. (13)].

2. Node features
The output of DEEPQMC GNNs are electron node embed-

dings f(n)i , which are subsequently used to generate the many-body
orbitals that constitute the entries of the generalized Slater deter-
minants and an optional trainable Jastrow factor. To enforce the
equivariance of these quantities with respect to the exchange of elec-
trons, the initialization of the electron embeddings has to be chosen
appropriately. In DEEPQMC, one can either use identical embed-
dings for all electrons of the same spin (invariant under permutation
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of same-spin electrons) or a concatenation of the electron–nuclei
difference vectors (equivariant under electron permutations),

f(n),0,el
i =

⎧
⎪⎪
⎨
⎪⎪
⎩

E
(n),el
θ (σi),

E
(n),el
θ (ri − R1, . . . , ri − RN),

(13)

where E
(n),el
θ are parameterized node embedding functions imple-

mented through MLPs.
If the GNN is chosen to explicitly consider electron–nuclei

interactions, the embeddings associated with the nuclear nodes
have to be initialized besides the electronic embeddings. DEEP-
QMC implements fixed nuclear node embeddings f(n)I , which either
distinguish all nuclei or depend on the respective atom type,

f(n),0,nuc
I =

⎧
⎪⎪
⎨
⎪⎪
⎩

E
(n),nuc
θ (I),

E
(n),nuc
θ (ZI).

(14)

3. Edge features
The edges of the graph hold the pairwise differences of node

positions (rij), and their embeddings are consequently initialized as

f(e),0,t(e)

ij = E
(e),t(e)

(rij), (15)

where E (e),t
(e)

is an edge type dependent featurization based on the
pairwise differences. This may correspond to directly feeding the dif-
ference vectors, using the pairwise distances, expanding in a basis of
Gaussians or working with rescaled difference vectors among other
options. In later interaction layers, the original edge embeddings are
either reused or iteratively updated,

f(e),l,t
(e)

ij =

⎧
⎪⎪
⎨
⎪⎪
⎩

f(e),0,t(e)

ij ,

ul,t(e)

θ (f(e),l−1,t(e)

ij ),
(16)

with the latter option making use of a parameterized update function
ul,t(e)

θ , thus increasing the effective depth of the architecture at the

cost of additional MLPs. The parameters of the update function ul,t(e)

θ
may be shared across different edge types.

4. Message generation
The electron embeddings are updated in each interaction layer

by aggregating messages passed along the graph edges. These mes-
sages are constructed via an elementwise product between functions
of the sending node and edge embeddings (graph convolution),

ml,t(m)

i = ∑

j∈t(n)

wl,t(e)

θ (f(e),l,t
(e)

ij ) ⋅ hl,t(n)

θ (f(n),l,t
(n)

j ). (17)

The superscript t(n) on the node features specifies the subset of send-
ing nodes, and the superscript t(e) on the edge features depends on
the type of the sending and the receiving nodes, respectively. The
choice of how to distinguish electron–electron messages based on
their spin (relative spin of sending and receiving electrons, spin of
sending electron, or no distinction between messages from spin-up
and spin-down electrons) is another hyperparameter of the GNN.

Optionally, the above sum over the edges can be normalized by
dividing it with the number of edges. Note that messages depending
only on node (edge) information can be obtained by setting the func-
tion wl,t(e)

θ (hl,t(n)

θ ) to return identity. The superscript t(m) runs over
all the constructed messages, which may include different choices of
wl,t(e)

θ and hl,t(n)

θ .

5. Electron embedding update
To obtain updated electron embeddings, messages from vari-

ous edge types are combined and added to a residual connection.
DEEPQMC implements a few protocols for the combination of
messages, which can be summarized as follows:

f(n),l+1,el
i = f(n),l,el

i +

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∑t(m) g l,t(m)

θ (ml,t(m)

i ),

g l
θ(∑t(m) ml,t(m)

i ),

g l
θ(⊕t(m)ml,t(m)

i ),

(18)

where ⊕ refers to the concatenation of the messages. In addition to
the messages constructed according to Eq. (17), the message types
t(m) can include a residual connection f(n),li such that the trainable
self-interaction of FermiNet and DeepErwin can be reproduced.

In the above-outlined general GNN framework, a wide vari-
ety of Ansätze can be obtained. Furthermore, the implementation
of DEEPQMC and its GNN framework focus on facilitating rapid
extensions with new Ansatz variants either by exploration within
the existing hyperparameter space or by extending it with new
features.

B. Orbital construction
The entries of the generalized Slater determinant in Eq. (8)

are obtained as products of many-body orbitals ϕp
k and envelopes

φp
k. The many-body orbitals are functions of the final equivariant

electron embeddings,

ϕp
k(ri,{r↑},{r↓}) = κθ(f

(n),L
i ), (19)

where κθ is an MLP applied electronwise, projecting the embedding
dimension to the required number of orbitals. For the φp

k envelopes,
DEEPQMC implements linear combinations of exponentials cen-
tered on the nuclei,

φp
k(ri) =∑I∑βI

ωp
kβI

exp (−∥Σp
kβI
(ri − RI)∥

α
), (20)

where ωp
kβI

and Σp
kβI

are trainable parameters and βI indexes the
basis function centered on atom I. The hyperparameter α ∈ (1, 2)
represents the choice of Slater type orbitals with α = 1 and Gaus-
sian type orbitals (GTOs) with α = 2. DEEPQMC provides an option
to restrict the envelopes to be isotropic (Σp

kβI
∶= σp

kβI
⋅ I). The GTOs

can be initialized from the molecular orbital coefficients of refer-
ence solutions with standard quantum chemistry basis sets obtained
in PySCF.36
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C. Determinant construction
Because the antisymmetry of the wave function is required with

respect to the exchange of same-spin particles only, Slater deter-
minants in VMC are typically considered block diagonal and are
factored into a spin-up and a spin-down component,

ψθ =∑p cp det [A↑,p(r)]det [A↓,p(r)]. (21)

In addition, DEEPQMC implements the full determinant option
explored by Lin et al.,10 which constructs a single determinant using
both spin-up and spin-down electrons,

ψθ =∑p cp det [A↿⇂,p(r)]. (22)

It is noted that since the many-body orbitals are not equivariant
under the exchange of opposite spin electrons, the full determi-
nant Ansatz is still not antisymmetric with respect to these per-
mutations. Instead, a full determinant can practically be under-
stood as an expansion in multiple spin-factorized determinants, e.g.,
by relying on the generalized Laplace expansion of determinants
to expand det[A↿⇂,p(r)] according to the rows corresponding to
spin-up electrons,

det [A↿⇂(r)] =∑S εS det [A↑,S(r)]det [A↓,S̄ (r)]. (23)

where S runs over all subsets of the orbitals that contain as many
elements as the number of spin-up electrons, S̄ stands for the com-
plement subset of S, A↑,S(r) denotes the submatrix of A↿⇂(r) formed
from the orbitals in S and the spin-up electrons, and εS is the sign of
the permutation defined by the subset S. For the block diagonal
matrices of Eq. (21), the determinants for all subsets of spin-up
orbitals containing off-diagonal elements evaluate to zero and the
sum in Eq. (23) reduces to a single product of a spin-up and spin-
down determinant. Note that since the many-body orbitals defined
in Eq. (19) are not equivariant with respect to exchanges of electrons
with opposite spins, the terms on the right-hand side of Eq. (23) with
different Ss will, in general, be unrelated. In practice, it is conceivable
that due to the concrete form of parametrization of the many-body
orbitals, there remains some structure in the set of factorized deter-
minants, which makes the full determinant more effective than using
an equivalent number of spin-factorized determinants formed from
independent orbitals.

D. Jastrow factor and cusp correction
The antisymmetry of the wave function is retained when mul-

tiplying it with a global correction term symmetric under the
exchange of the same-spin particles. This symmetric correction, tra-
ditionally called a Jastrow factor, is well suited to introduce known
asymptotics to the Ansatz. DEEPQMC implements a learnable Jas-
trow factor eJ , where J is computed from the permutation invariant
sum of many-body electron embeddings,

J = ηθ(∑
i

f(n),Li ), (24)

with ηθ again being implemented by an MLP. Furthermore, DEEP-
QMC provides a fixed Jastrow factor that implements the known
asymptotic behavior37 when two electrons approach

γ(r) =∑
i< j
−

αcij

1 + α∣ri − r j ∣
, (25)

where cij is 1
4 if the electrons i and j are of the same spin and 1

2 if the
electrons possess opposite spins and the hyperparameter alpha scales
the width of the correction term. If cuspless Gaussian envelopes are
used, a similar cusp correction can be employed for the nuclei,

γ(r, R) =∑
i,I

αZI

1 + α∣ri − RI ∣
, (26)

serving as a simple replacement for the more involved technique
utilized by Hermann et al.7

E. Log-representation of the wave function
The output of the (unnormalized) neural network wave func-

tions typically spans many orders of magnitude, potentially resulting
in instabilities due to finite floating-point precision. In order to
improve numerical stability, DEEPQMC represents wave functions
in the log-domain,

ψ = (sign (ψ), log (∣ψ∣)). (27)

We mitigate over- and underflow problems during the computation
of the determinant by performing it directly in the log-domain using
the appropriate slogdet function provided by JAX. In order to per-
form the summation over multiple determinants ϕp, we apply the
log-sum-exp trick,

log
⎛

⎝

RRRRRRRRRRR

∑

p
ϕp
RRRRRRRRRRR

⎞

⎠

= max{log (∣ϕp
∣)} + log

⎛

⎝

RRRRRRRRRRR

∑

p
sign (ϕp

)

× exp (log (∣ϕp
∣) −max{log (∣ϕp

∣)})

RRRRRRRRRRR

⎞

⎠

. (28)

Note that for the variational principle to remain valid, it is sufficient
to ensure the antisymmetry of the trial wave function and its explicit
sign is not needed for the evaluation of any of the quantities involved
in the optimization Eq. (30).

IV. TRAINING
In this section, some technical aspects of the variational opti-

mization of deep-learning trial wave functions are discussed. While
these Ansätze are trained within the standard VMC framework,
the characteristics of their optimization differ markedly from other
VMC Ansätze, mainly due to the greatly increased parameter count
introduced by neural networks. On the other hand, it is also distinct
from most other deep-learning settings owing to the unusual com-
plexity of the loss function and the self-supervised setting, where the
training data are generated in parallel to the optimization.

A. Loss function and gradient trick
As discussed in Sec. II B, VMC relies on the variational prin-

ciple by optimizing the wave function Ansatz to minimize the
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expectation value of the local energies. From a machine learning
perspective, this translates to considering the loss function

ℒ(θ) = Er∼∣ψθ ∣2[Eloc[ψθ](r)]. (29)

Naively computing the gradient of this loss would involve taking
derivatives of the local energies Eloc[ψθ] with respect to the Ansatz
parameters θ. However, evaluating the local energy already involves
second derivatives of the wave function with respect to the elec-
tron coordinates due to the Laplacian in Eq. (1). Consequently, this
naive gradient computation would necessitate taking mixed third
derivatives of the Ansatz.

To reduce the computational costs and numerical instabili-
ties associated with higher order derivatives, a different unbiased
estimator of the loss gradient is utilized,

∇θℒ(θ) = 2Er∼∣ψθ ∣2[(Eloc[ψθ](r) −ℒ(θ))∇θ log ∣ψθ∣]. (30)

The derivation of this estimator exploits the hermiticity of the
Hamiltonian and is given in full detail by Inui et al.38 It replaces
the derivatives of the local energy with a simple gradient of the
wave function; therefore, it is expected to be more efficient and
numerically stable to evaluate than the direct gradient computation.

B. Local energy evaluation
The evaluation of the local energies of the wave function Ansatz

is by far the most computationally demanding part of the training
(and evaluation),

Eloc[ψθ](r) = −
1
2∑i

(
Δriψθ(r)
ψθ(r)

) + V(r)

= −
1
2∑i

(Δri log ∣ψθ(r)∣ + (∇ri log ∣ψθ(r)∣)
2
) + V(r).

(31)

While the potential energy term is very cheap to evaluate, the cost
of the Laplacian within the kinetic energy term scales steeply with
the number of electrons. In this step, one obtains second derivatives
of the wave function with respect to the electron coordinates. We
obtain these derivatives of the wave function by applying automatic
differentiation in backward–forward mode, which we confirmed to
be a good choice in the setting of molecular wave functions. Fur-
ther discussions regarding the memory bottleneck associated with
the Laplacian and details regarding the implementation choices are
presented in Appendix A.

C. Pretraining
Choosing initial values for Ansatz parameters is a non-trivial

question common to many computational chemistry methods. One
need only think of the sensitivity of the self-consistent iterations
to the initial guess in Hartree–Fock (HF) and related methods.39–41

The case of deep-learning VMC Ansätze is no different—a random
initialization of the neural network parameters according to some
of the widely adopted schemes of the machine learning commu-
nity can lead to the optimization diverging or converging to local
minima. This problem becomes increasingly severe with growing

system size, presumably due to the higher-dimensional, more com-
plex wave functions of larger molecules and their intricate nodal
structure.

A practical solution to this issue is the initialization of the
wave function based on a cheap reference solution. To that end,
DEEPQMC interfaces with PYSCF,36 enabling the initialization of
wave functions from the coefficients of a preceding HF or multi-
configurational self-consistent field (MCSCF) calculation. While this
allows the direct initialization of the neural network wave function
Ansatz as introduced by Hermann et al.,7 subsequent work sug-
gested that explicitly incorporating an approximate reference wave
function in the model can deteriorate performance.11 Instead, a
short, supervised pretraining with respect to a reference solution
before the self-supervised variational optimization is recommended.
In this step, the many-body orbitals of the Ansatz are trained to
match the reference by minimizing the pretraining loss

ℒp(θ) = Er∼∣ψθ ∣2[∑
ki
(φref

k (ri) − ϕk(ri,{r↑},{r↓}) × φk(ri))
2
],

(32)
where φref

k are the occupied orbitals of the HF/MCSCF wave func-
tion. Unlike the variational loss of Eq. (29), computing ℒp does not
involve evaluating the Laplacian of the Ansatz, which means that
pretraining requires significantly less computational resources than
variational training. Initialization with pretrained orbitals, as intro-
duced by Pfau et al.,8 improves the convergence properties of the
variational training and, if well balanced with the subsequent vari-
ational optimization, can even slightly boost the final accuracy, as
Gerard et al. recently demonstrated.11

D. Gradient clipping
Despite the utilization of sophisticated gradient estimators and

pretraining, the convergence of the variational optimization is still
often hindered by outliers in the training batches of local energies.
The existence of these outliers is not surprising, considering that the
electrostatic energy is singular when two particles coincide, while the
kinetic energy is singular at the nodes of the wave function—energy
contributions that the shape of the wave function precisely levels out
in later stages of the training. While the outliers are valid contri-
butions to the energy expectation value, their presence can inject
a lot of noise into the gradient estimates. To reduce their contri-
bution to the parameter update, the loss and its gradient [given
in Eqs. (29) and (30)] are evaluated using clipped local energies
Êμ,σ

loc , where μ is the center and σ is the half-width of the clipping
window.

Regarding concrete choices for μ and σ, some empirical find-
ings have been reported in the related literature. Investigating
transition metal atoms using pseudopotentials, Li and co-workers
reported16 that choosing σ = 10 × std(Eloc) significantly outper-
forms all other options they have considered. More recently, von
Glehn et al.12 have found that centering the clipping window at the
median of local energies, and using the mean absolute deviation
from the median to determine σ, improves the training of multi-
ple deep-learning Ansätze. Considering the practical importance of
the clipping mechanism, DEEPQMC implements the algorithm of
von Glehn et al.,12 along with an analogous logarithmically scal-
ing “soft” clipping scheme introduced by Hermann et al.,7 and
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also offers full flexibility to the user in specifying custom clipping
functions.

Finally, it should be highlighted that the local energies are only
to be clipped for computing the gradient of the loss during optimiza-
tion. Since clipping can introduce a bias to the estimate of the energy
expectation value, variational energy estimates can only be obtained
from unclipped local energies.

E. Optimizer
Utilizing natural gradient descent optimization42 or

Kronecker-factored approximations thereof43 has proven to
be a crucial ingredient to the success of variational optimization
of deep-learning wave functions on molecular systems.8,11,12,44,45

Consequently, DEEPQMC makes use of the Kronecker-Factored
Approximate Curvature (KFAC) optimizer implementation of
Botev and Martens.46 To showcase the importance of the choice
of the optimizer, the performance of KFAC is compared to the
commonly employed first-order optimizer AdamW,47 on varia-
tional trainings on six test systems. The obtained training energy
curves are plotted in Fig. 2. To account for the 10%–25% longer
per iteration run time of KFAC compared to AdamW, the wall
clock time of the training (instead of the usual iteration count) is
shown on the horizontal axes. The results show that the slightly
increased per-iteration cost is offset by the significantly improved
per-iteration convergence speed of the KFAC optimizer. Further-
more, it is found that the increase in the relative cost of KFAC over
AdamW optimization is smaller for systems with larger numbers
of electrons. In practice, this means that the last percents of corre-
lation energy can be recovered much more efficiently with KFAC,
resulting in improved final energies for a given computational
budget.

The effectiveness of natural gradient descent in this setting can
be rationalized through its connection to the stochastic reconfigu-
ration method,8,48 known from the traditional variational quantum
Monte Carlo optimization.49,50

FIG. 2. Comparing the performance of the AdamW and KFAC optimizers. Total
energy errors during the training process are shown for beryllium, lithium hydride,
methane, ammonia, water, and cyclobutadiene. The horizontal axes show the wall
clock time of the training, measured on a single Nvidia GTX 1080 Ti GPU. To obtain
smooth training curves, the exponential moving average of the training energy is
plotted. While on smaller systems (Be and LiH), AdamW converges slightly faster,
due to its lower per-iteration cost, on the larger systems, the benefit of using KFAC
is clear.

These higher order methods utilize the Fisher information of
the unnormalized density associated with the wave function as a pre-
conditioner to the gradients. KFAC extends the application range
of natural gradient descent by low-rank approximating the Fisher
information, facilitating its computation for neural network wave
functions with large numbers of model parameters.

Instead of following the steepest descent in parameter space,
an optimization step with the preconditioned gradient is in the
direction of steepest descent in distribution space, with distance
defined by the Kullback–Leibler (KL) divergence.51 Considering that
in VMC, the predicted quantity ψθ(r) directly defines the distribu-
tion p(r∣θ)∝ ∣ψθ(r)∣

2, one concludes that a natural gradient step is
in the direction of maximal loss decrease for a given KL divergence
between ψθ and ψθ+dθ. This is an advantageous property, as relying
on the KL divergence results in updates that are independent of the
way ψθ is parameterized, as opposed to the steepest descent where
the Euclidean metric introduces strong dependence.

V. SAMPLING
An important characteristic of VMC is that the data (elec-

tron positions) used to fit the model are generated in tandem with
the optimization, by sampling the probability distribution of the
electronic degrees of freedom defined by the square of the wave
function. This sampling task comes with its own challenges, due
to its tight coupling with the training. For the variational principle
to remain valid, the samples used to evaluate (6) must be equili-
brated according to the distribution r ∼ ∣ψθ(r)∣

2. Furthermore, since
ψθ is updated in every training iteration, the sampling must account
for the corresponding changes in the distribution of the electron
positions. To carry out this demanding sampling task in a compu-
tationally efficient manner, the DEEPQMC program package offers
two optimized Markov chain Monte Carlo (MCMC) algorithms.
Along with the random walk MCMC algorithm,52,53 referred to as
Metropolis sampler, the Metropolis-Adjusted Langevin Algorithm54

(MALA), referred to as Langevin sampler, is also implemented,
which proposes walker updates using overdamped Langevin dynam-
ics. The implemented MALA includes the correction proposed by
Hermann et al.,7 which scales the electron step sizes around the
nuclei to avoid “overshooting” the latter. In addition, changes of
the wave function during training can be accounted for by re-
equilibration after each gradient step or using a batch reweighting
scheme. In Secs. V A and V B, these MCMC samplers along
with the above-described sampling difficulties are characterized in
more detail.

A. Energy convergence
First, the convergence of the energy expectation value esti-

mate is investigated, when sampling an unchanging, previously
trained Ansatz. In order to draw n = nb × ns electron samples {r}ij,
distributed according to ∣ψθ(r)∣

2, a batch of nb many walkers is prop-
agated for ns MCMC steps. Based on the electron samples, the energy
expectation value is estimated as

⟨E⟩ =
1
n

nb

∑

i=1

ns

∑

j=1
Eloc[ψθ]({r}ij). (33)
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Following the central limit theorem,32,55 the sampling error of such
estimates decays proportional to n−1/2. To approximate the sam-
pling error, we utilize the nonoverlapping batch means estimator, as
reviewed by Flegal et al.55 We first obtain independent estimates of
the energy by averaging the local energies over the walker trajectories
(batches),

⟨E⟩i =
1
ns

ns

∑

j=1
Eloc[ψθ]({r}ij). (34)

Considering these batches, the sampling error is then estimated as

⟨σE⟩ =

¿

Á
ÁÀ∑

nb
i=1 (⟨E⟩

i
− ⟨E⟩)2

nb(nb − 1)
. (35)

The convergence of the energy estimate and its error bar
throughout the evaluation of an Ansatz trained on the CH4 molecule
are plotted in Fig. 3. In the top pane, the final value of the exponen-
tial walking mean of the training energies and its estimated error
are also shown with a horizontal line and shaded area. It can be
seen from this plot that the energy estimate of the evaluation con-
verges gradually toward the final training energy as expected, while
its sampling error converges toward zero. Note that due to the para-
meter updates during the optimization, the energy estimate from the
training is an unreliable estimate and a thorough evaluation of the
energy expectation value requires sampling the Ansatz with fixed
parameters.

In the bottom pane of Fig. 3, the convergence of the estimated
sampling error is compared between the Metropolis sampler and
the Langevin sampler. Importantly, the expected n−1/2 convergence
behavior is observed for both methods. Comparing the two algo-
rithms, it can be seen that the error of MALA converges slightly
faster than that of random walk MCMC, indicating a lower degree
of correlation between the subsequent positions of the walkers of the
Langevin sampler.

FIG. 3. Top: Evaluation of a trained wave function Ansatz; bottom: sampling error
for the evaluation of a trained Ansatz. The convergence of the energy expectation
value is depicted during the evaluation of an optimized CH4 Ansatz using two thou-
sand MCMC walkers. In the top pane, sampling is performed with the random walk
MCMC algorithm. The evaluated energy is compared to the final training energy,
with shaded areas showing error estimates. In the bottom pane, the convergence
of the sampling errors of evaluations with the Metropolis sampler and the Langevin
sampler is compared. The sampling errors converge as n−1/2 with the number of
samples n, as expected from the central limit theorem.

B. Decorrelated sampling
To characterize the phenomenon of correlated samples hinted

at in Sec. V A, autocorrelation functions of the local energy samples
are investigated. The autocorrelation function of the local energies
sampled by a single MCMC chain is defined as

ρEloc(t) = ∫
∞

−∞
(Et′+t

loc − μEloc)(E
t′
loc − μEloc)dt′, (36)

where Et
loc denotes the local energy sampled at step t and μEloc

is the mean of the local energies over the entire trajectory. The
autocorrelation time of the local energy is then computed as
τ′ = 2∫

∞

0 ρEloc(t) dt. Finally, τ is obtained by taking the mean of
τ′s over all propagated MCMC chains, providing a simple measure
of local energy autocorrelation.

The autocorrelation times for five atoms of increasing size and
the cyclobutadiene molecule are plotted in the upper pane of Fig. 4,
for both the Metropolis and the Langevin sampler. The general trend
of longer autocorrelation times for larger systems can be observed
for the Metropolis sampler. One of the main causes of this trend
is the increasing nuclear charge, which induces higher and higher
peaks in the distribution of the electrons near the nuclei. These pro-
nounced peaks necessitate shorter update proposal radii, ultimately
resulting in a higher correlation between subsequent samples. Fur-
thermore, the autocorrelation time is expected to grow with the
increasing complexity of the wave functions and their nodal sur-
faces. On the other hand, the Langevin sampler seems less affected
by this trend, delivering largely constant autocorrelation times for
all systems. It is reasonable to assume that by explicitly making use
of information about the gradient of the wave function, the MALA
update proposal retains better decorrelation efficiency than random
walk MCMC, when considering more and more complicated wave
functions. Finally, the showcased autocorrelation times are in rea-
sonably good agreement with the fact that the default number of
decorrelating steps performed between parameter updates is cho-
sen between 10 and 30 in the currently used neural wave function
program packages.

FIG. 4. Autocorrelation times of the local energy samples. The top pane shows the
MCMC sampling autocorrelation time τ, as defined in Sec. V B, for a sequence
of atoms and the ground state of cyclobutadiene. The bottom pane shows the
run time of performing τ sampling steps for the same systems. The electrons are
sampled using either the Metropolis sampler or the Langevin sampler. Following
the suggestion of Sokal,56 the autocorrelation times are estimated using MCMC
chains of length ≈5τ.
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The experiments depicted in Fig. 4 also demonstrate a slightly
smaller correlation between subsequent samples of the Langevin
sampler in comparison with those of the Metropolis sampler, for all
but the smallest of systems. In the bottom pane of Fig. 4, the wall
clock run time of performing τ sampling steps are shown for each
system, to account for the slightly increased computational cost of
the MALA update proposal. Considering wall clock run times, the
Metropolis sampler is more efficient on atoms up to carbon, while
the Langevin sampler performs slightly to considerably better on the
larger atoms and cyclobutadiene. While we find MALA to be more
efficient than random walk Metropolis, we observe that for larger
systems with heavier nuclei, it could result in less stable optimiza-
tion. To improve the black-boxed nature of the method, we applied
random walk MCMC in all subsequent experiments.

VI. SCALING
Understanding the scaling of a method’s computational cost

with the considered system size is of utmost importance in the field
of quantum chemistry, where a pervasive caveat of the most accu-
rate approaches is their unfavorable scaling behavior. Given its high
accuracy, the asymptotic scaling of VMC (typically listed with N4)32

is considered favorable. Although this general scaling is, indeed,
much better than, for example, the N7 scaling of the gold-standard
CCSD(T) method, and on a par with the scaling of hybrid den-
sity functionals (such as DM213), deep QMC calculations incur a
larger prefactor, resulting in much higher practical costs on systems
of intermediate size. While reducing this prefactor is an important
long term goal of method developers in the field, investigating the
method’s scaling is also of interest, to estimate the prospect of sys-
tem sizes feasible with further improvement and serve as a baseline
for future developments. In this section, the scaling of the compu-
tational cost of the variational training of deep-learning Ansätze is
investigated using the DEEPQMC program package. Further scaling
aspects of the pseudopotential implementation and design choices
regarding the major computational bottlenecks of the algorithm are
discussed in Appendix A.

The theoretical scaling of VMC (N4
) is obtained when com-

bining the N3 cost of the determinant evaluation with an additional
factor of N from the Laplacian required in the computation of the
kinetic energy. In practice, however, for simulations with the cur-
rently feasible system sizes, the determinant evaluation makes up
only a fraction of the computational cost, which is instead domi-
nated by the evaluation of the neural networks of the Ansatz. To
investigate the practical scaling of a variational training step in
DEEPQMC, single iteration run times are compared across atoms
with increasing atomic numbers, as well as across chains contain-
ing an increasing number of hydrogen atoms (Fig. 5). Although
the systems contain different numbers of particles, due to the
parametrization with GNNs, the total parameter count of the wave
function Ansatz changes only marginally between systems. On the
other hand, owing to the varying numbers of nuclei, isoelectronic
species can have slightly different computational requirements. The
system classes of atoms and hydrogen chains were chosen, as they
represent the lower and upper bounds respectively, on the number
of nuclei a neutral system with a fixed number of electrons can con-
tain. Consequently, the scaling of the run time with the number of
electrons is also expected to be bounded by these system classes.

FIG. 5. Scaling of the computational cost with system size. The figure depicts
the time in seconds per variational optimization step for systems with up to 45
electrons. The timings were obtained for training steps with a batch size of 2000
run, on a single A100 GPU. A power law fit gives the scaling exponent of 2.79 for
the hydrogen chains and 2.37 for the atoms.

With the tight empirical bounds of N2.36−2.79 depicted in Fig. 5,
the observed scaling of DEEPQMC is still far below the theoreti-
cal estimate of N4, highlighting the potential for extension to larger
systems.

VII. ANSATZ VALIDATION
Relying on the general framework introduced above, the DEEP-

QMC software suite enables the use of many of the previously
published deep-learning Ansätze by providing configuration files
to reproduce PauliNet,7 FermiNet,8 and DeepErwin.11 To validate
our implementation of these Ansätze, the hyperparameters of sam-
pling, optimization, and GNN architecture are compared in depth to
those of the respective reference implementations. In addition, it is
verified that when using the same parameters, the DEEPQMC imple-
mentations predict the same wave function value and local energy
as their reference counterparts for a given configuration of elec-
trons and nuclei. Note that we have refrained from exactly matching
the cusp-corrected GTOs of PauliNet, because subsequent work has
demonstrated that explicitly including a reference solution is lim-
iting the accuracy of the Ansatz. However, by combining Gaussian
envelopes initialized from the coefficients of a reference calculation
with a nuclear cusp correction in the Jastrow factor (26), it is possi-
ble to obtain a variant of PauliNet within DEEPQMC that matches
the characteristics of the original Ansatz.

In Fig. 6, the empirical performance of the various Ansätze
is checked against results published in the literature for a small
set of molecules. It can be seen that our DEEPQMC implementa-
tion of PauliNet, FermiNet, and DeepErwin matches the reference
energies well. The remaining discrepancies of FermiNet result from
slightly different experimental setups, such as an increased number
of reference optimization steps (200 000 compared to 50 000 used
here) and batch size (4096 compared to 2048 used here), or an
older TensorFlow-based implementation being used in case of N2.
The impact of these changes on the deviations of the model accu-
racy highlights the importance and difficulty of comparing Ansätze
implemented in different codebases under the same experimental
conditions.

As a further contribution, we introduce and analyze the perfor-
mance of a new default Ansatz for the DEEPQMC program package,

J. Chem. Phys. 159, 094108 (2023); doi: 10.1063/5.0157512 159, 094108-10

© Author(s) 2023

 02 February 2024 12:16:16

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 6. Validating the DEEPQMC implementation of various Ansätze by compar-
ing their accuracy to published results obtained with their respective reference
implementations. Note that results obtained with the DEEPQMC or DeepErwin
codebases were computed using 50 000 variational optimization steps and a batch
size of 2048, while the FermiNet reference results used 200 000 training steps and
4096 samples in a batch. Results computed with the reference implementations
are taken from the studies of Pfau,8 Spencer,44 and Gerard.11

which we refer to as PauliNet2. This exemplary Ansatz was opti-
mized to have a good trade-off between accuracy and trainable
model parameters. Despite achieving a similar accuracy as FermiNet
and DeepErwin for the small systems under investigation (see Figs. 6
and 7), the PauliNet2 Ansatz has only about a third of the model
parameters of FermiNet and a quarter of DeepErwin (i.e., for the
CO molecule, 239 829, 766 944, and 998 816 parameters, respec-
tively). The Ansatz combines the SchNet-like graph convolutions of
PauliNet (17) with the iterative update of the edge embeddings of
FermiNet (18). Edge features are constructed from difference vec-
tors between the electrons, and isotropic exponentials are used as
envelopes. Furthermore, the Ansatz comprises a trainable Jastrow
factor (24) and the fixed electronic cusp correction (25). While these
hyperparameters are found to be suitable for the presented exper-
iments, it is conceivable that an extended hyperparameter search
targeting specific applications could further improve its perfor-
mance. The detailed settings of the discussed Ansätze can be found
in the respective configuration files shipped with the DEEPQMC
package.

VIII. APPLICATION EXAMPLES
In this section, the ease of applying the DEEPQMC pro-

gram package as a black-box method to obtain electronic ener-
gies is demonstrated on benchmark datasets. Two widely different
example problems are chosen in order to showcase the general

applicability of the presented method. The experiments are per-
formed using DEEPQMC command line interface, which exposes
all configuration options of the software suite while also allow-
ing for effortless submission of simple calculations. Short usage
examples of the DEEPQMC command line interface are provided
in Appendix B.

A. Small molecule reactions
The electronic contributions to the reaction energies of 12

reactions involving small inorganic molecules and hydrocarbons
are investigated. These reactions were used by Nemec57 to bench-
mark the accuracy of Slater–Jastrow (SJ) type trial wave functions,
constructed following Drummond et al.58 using electron–electron,
electron–nucleus, and electron–electron–nucleus terms in the Jas-
trow factor. The 14 participating molecules are built from H,
C, O, N, and F atoms, containing at least 2 and at most 22
electrons. To facilitate the comparison with the DMC results of
Nemec,57 the same molecular geometries are considered, obtained
from the work of Feller.59 Reference energies are taken from the
review of O’Neill.60 All electron, complete basis set extrapolated
CCSD(T) energies are computed in house, using the PySCF program
package.36

First, single-point electronic energies obtained for the partic-
ipating molecules are compared in Fig. 7. On the vertical axis, the
error of the recovered total energy is plotted, for VMC and DMC
calculations utilizing SJ type trial wave functions and for VMC
with deep-learning Ansätze. Looking at Fig. 7, one can observe that
the total energy errors of SJ-VMC Ansätze are consistently above
47 mEh (with a mean of 114 mEh), while the associated DMC errors
are in the range of 8–50 mEh (26 mEh on average). In comparison,
deep-learning Ansätze exhibit at maximum only 11 mEh total energy
error, with a mean deviation of 2.6 mEh. While the main goal of
quantum chemistry methods is to accurately model energy differ-
ences, rather than recover exact total energies, it is encouraging to
see that DEEPQMC and deep-learning Ansätze, in general, are very
competitive in this area.

The accuracy of the energy differences obtained with SJ-DMC,
CCSD(T), and deep-learning QMC methods is compared in Fig. 8.
Note that the energy differences obtained with SJ-VMC are not
shown in this figure, as they are an order of magnitude less accu-
rate than the depicted approaches. Comparing the SJ-DMC results
with those obtained from DEEPQMC, one concludes that combin-
ing the VMC method with expressive deep-learning Ansätze greatly
increases its accuracy, surpassing SJ-DMC on eleven out of twelve
reactions. The accuracy advantage of DEEPQMC’s PauliNet2, Fer-
miNet, and DeepErwin Ansätze is similarly clear when comparing
their respective reaction energy mean absolute deviations (MADs) of
2.4, 2.3, and 1.5 mEh to the 7.6 mEh of SJ-DMC. As a final compari-
son, Fig. 8 also shows the reaction energy differences obtained from
a complete basis set extrapolated, all-electron CCSD(T). Not surpris-
ingly, CCSD(T) performs outstandingly on these small, single refer-
ence systems in equilibrium geometry, achieving a MAD of 1.3 mEh,
and chemical accuracy (less than 1 kcal/mol or 1.6 mEh error) on ten
reactions. In comparison, the MAD value of PauliNet2, FermiNet
and DeepErwin for this exemplary study with DeepQMC is found
to approach that of CCSD(T) and chemical accuracy is achieved on
seven, seven and eight out of twelve reactions respectively.
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FIG. 7. Total energy deviations for small molecules of H, C, O, N, and F atoms. The presented molecules participate in the reactions investigated by Nemec.57 The reference
total and HF energies are taken from the review of O’Neill,60 while SJ VMC and SJ DMC results are taken from the work of Nemec.57 The results for the hydrogen molecule
are omitted, as it is described nearly exactly by all depicted methods. The error bars denote the sampling error as estimated according to (35).

FIG. 8. Reaction energy deviations for the reactions involving small molecules
of H, C, O, N, and F atoms. Reference reaction energies are computed from
the electronic energies reviewed by O’Neill,60 SJ-DMC results are obtained from
Nemec,57 while complete basis set extrapolated CCSD(T) values are calculated
in house using PySCF.36 The energies for PauliNet2, FermiNet, and DeepErwin
are obtained with the DEEPQMC program package. The range of ±1 kcal/mol
deviation (often referred to as chemical accuracy) is highlighted with dashed lines.

B. Transition metal oxides
The effects of utilizing pseudopotentials in variational opti-

mization of deep-learning molecular wave function are evaluated on
a series of four first-row transition metal oxides. The bond lengths
of the ScO, TiO, VO, and CrO molecules are taken from the experi-
mental results of Annaberdiyev et al.61 The latest ccECP pseudopo-
tentials61 are applied to the transition metal atoms only, replacing

neon-like cores of ten electrons. Although replacing argon cores (18
electrons) with pseudopotentials would result in even larger compu-
tational savings, this is avoided as the third shell electrons are known
to play a non-negligible role in the bond formation of transition
metal atoms.62 Apart from the introduction of pseudopotentials,
the Ansatz employed on small molecule reactions (Sec. VIII A) is
utilized here without further modifications.

Comparing the technical details of pseudopotential calculations
to all-electron ones, the advantage of the former is clear. Due to
the exclusion of the fastest moving core electrons, the length of the
electron position updates is sixfold increased and a higher accuracy
is achieved in a given number of training steps, at about half of
the computational cost. Next, the dissociation energies of the four
transition metal oxides are estimated. The dissociation energy of a
transition metal X is defined as

ΔEXO
d = EX

+ EO
− EXO, (37)

where EO
= −75.0631(1) Ha is the result of an all-electron calcu-

lation with the same hyperparameters. Figure 9 shows the com-
parison of the obtained dissociation energies to experimental val-
ues63 and those of some other accurate computational methods,
such as CCSD(T),61 FermiNet,16 auxiliary field quantum Monte
Carlo (AFQMC), semi-stochastic heat bath configuration interac-
tion (SHCI), and density matrix renormalization group (DMRG).64

Apart from the TiO case, the accuracy of DEEPQMC with pseu-
dopotentials is comparable to other theoretical methods, such as
CCSD(T) or AFQMC. The fact that the dissociation energy estimates
with DEEPQMC are systematically lower than the experimental
results indicates that the single atoms are described more accurately
than the oxide molecules. This can be counteracted by increasing the
expressiveness of the Ansatz and investing more computations. Note
that the results obtained with FermiNet16 utilized a larger Ansatz
trained for about ten times more training iterations than done in
this study.

IX. SUMMARY AND CONCLUSIONS
We have presented the DEEPQMC program package—a gen-

eral variational quantum Monte Carlo framework for optimiz-
ing deep-learning molecular wave functions. The implementa-
tion focuses on modularity, facilitating rapid development of new
Ansätze, and provides maximal freedom in choosing the specifics
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FIG. 9. Dissociation energy of transition metal oxides calculated using different
methods. The DEEPQMC + ECP result was obtained using 55 000 training steps
and 5 000 evaluation steps. The results for FermiNet + ECP are taken from Li
et al.,16 where they used ten times more steps and, consequently, achieved a
higher accuracy. Other results are from Refs. 62 and 64.

of the variational training setup. The Ansatz shipped with DEEP-
QMC attempts to unify most of the currently existing deep-learning
molecular wave functions while remaining easy to extend as new
models emerge. To reduce the computational complexity associated
with heavy nuclei, some popular precomputed pseudopotentials are
also implemented.

Using the framework provided by DEEPQMC, the most impor-
tant practical aspects of variational optimization of deep-learning
molecular wave functions are discussed. The importance of a proper
gradient estimator along with robust gradient clipping is high-
lighted. For consistent Ansatz initialization, supervised pretraining
to HF wave functions is suggested. The advantages of using the
second-order KFAC optimizer are demonstrated, along with a ratio-
nalization of its effectiveness. The theoretical convergence of the
Markov Chain Monte Carlo sampling error is verified, and MALA is
shown to be more effective in obtaining decorrelated samples than
the widely utilized random walk MCMC algorithm. The empiri-
cal scaling of the method’s computational cost is found to be more
favorable than that of the most popular post-HF approaches, while
its large prefactor is identified as an obstacle on the path to wider
adoption.

The black-box application of the program package is demon-
strated in two significantly different settings. The electronic reaction
energies of 12 small molecule reactions are computed with a mean
absolute deviation of 1.5 mEh and compared to the 1.3 mEh achieved
by CCSD(T) and 7.6 mEh achieved by DMC with SJ Ansätze. Using
the same Ansatz hyperparameters, dissociation energies are com-
puted for a series of transition metal monoxides, utilizing the latest
ccECP61 pseudopotential. Improved training characteristics com-
pared to all-electron calculations highlight the benefit of employing
pseudopotentials. The accuracies of the predicted dissociation ener-
gies are on a par with or exceed those of some other recently

popularized methods, such as auxiliary field quantum Monte Carlo
or density matrix renormalization group.

To conclude, the presented method shows great promise
to become an easy-to-use, general, black-box method accurately
describing the molecular electronic structure. Especially encour-
aging is the favorable scaling of computational requirements with
increasing system size. It is easy to envision that after further devel-
opment reducing the large prefactor of the computational costs,
the DEEPQMC package will prove valuable to the wider quantum
chemistry community.
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APPENDIX A: ADDITIONAL SCALING EXPERIMENTS
1. Pseudopotentials

Figure 10 shows the scaling of the run time of the non-local
pseudopotential evaluation [the second term in Eq. (12)] on the
third-row and fourth-row atoms. This term dominates the total
computational overhead of using pseudopotentials overwhelmingly.

From the five nested summations of Eq. (12), only the sum over
the valence electrons scales with the number of electrons, hinting
at an approximate linear scaling with system size. Figure 10 shows
that the obtained empirical scaling of N1.19 is in good agreement
with expectations. The sudden jump in run time from 20 to 21
electrons is caused by the reduction in valence electrons, as the uti-
lized ccECP pseudopotentials use a larger core for 4p elements than
for 3d ones.

2. Memory requirement
For all investigated applications, the memory requirement bot-

tleneck is presented by the computation of the Laplacian of the wave
function,∑3N

i
∂2

∂2ri
ψθ(r). In this step, one obtains second derivatives

of the wave function with respect to the electron coordinates. We
obtain the derivatives of the wave function by applying automatic
differentiation in the backward–forward mode. While the gradient
∇rψθ is obtained in one backward pass for all coordinates, the diag-
onal of the Hessian (∂

2ψθ
∂2ri
) requires an additional 3N forward mode

differentiations to compute, one for each electron coordinate. Due to
the flexible function transformations of JAX, both the serial and par-
allel executions of the 3N forward mode differentiation passes can be
implemented in a few lines of code, with the two implementations
presumably differing in how they trade computational efficiency for
memory requirement.

To decide between the serial and parallel approaches to the
Laplacian computation, benchmark calculations on a series of atoms
with increasing nuclear charges are performed. The obtained rela-
tive memory requirements of the parallel and serial computations
are presented on the left vertical axis of Fig. 11. The observed lin-
ear scaling of the relative memory requirement between parallel and
serial evaluations can be understood by considering that the parallel
implementation holds data for all 3N backward passes in memory,
while the serial approach stores data for a single pass at a time.
However, the prefactor of the scaling curve is significantly less than
three, which indicates that JAX performs some optimizations on the
parallel code that reduce the naive 3N memory requirement mul-
tiplier. Considering the run times of the two versions (lower panel
of Fig. 11), it is found that the relative timings of the serial imple-
mentation over the parallel implementation do not scale with the
system size. In fact, the ratio of run times between the serial and par-
allel implementations appears to converge around 1.5. Taking the
above observations into account, the serial implementation of the
Laplacian evaluation is chosen, due to its favorable scaling memory

FIG. 12. Example usage of the DEEPQMC program package through its command line interface.
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requirements that outweigh the slight, non-scaling run time edge of
the parallel implementation.

APPENDIX B: USAGE OF DEEPQMC

Here, we provide a few minimal examples of the usage of
the DEEPQMC command line interface. The interface is based on
HYDRA, which provides a modular way to configure and execute
complex jobs. DEEPQMC implements a wide variety of configura-
tion options for the wave function Ansatz as well as the hyperparam-
eters of training and evaluation. For ease of use, the package includes
predefined configuration files, which can be augmented using the
command line or extended with custom configuration files. For a
thorough tutorial and API documentation, the reader is referred to
the DEEPQMC documentation. For examples of typical DEEPQMC
commands, see Fig. 12.
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