dc.contributor.author
Baumann, Alexander
dc.contributor.author
Kaplan, Haim
dc.contributor.author
Klost, Katharina
dc.contributor.author
Knorr, Kristin
dc.contributor.author
Mulzer, Wolfgang
dc.contributor.author
Roditty, Liam
dc.contributor.author
Seiferth, Paul
dc.date.accessioned
2024-02-01T12:55:21Z
dc.date.available
2024-02-01T12:55:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42251
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41977
dc.description.abstract
Let S ⊆ R2 be a set of n sites in the plane, so that every site s ∈ S has an associated
radius rs > 0. Let D(S) be the disk intersection graph defined by S, i.e., the graph
with vertex set S and an edge between two distinct sites s, t ∈ S if and only if the
disks with centers s, t and radii rs , rt intersect. Our goal is to design data structures
that maintain the connectivity structure of D(S) as sites are inserted and/or deleted
in S. First, we consider unit disk graphs, i.e., we fix rs = 1, for all sites s ∈ S.
For this case, we describe a data structure that has O(log2 n) amortized update time
and O(log n/ log log n) query time. Second, we look at disk graphs with bounded
radius ratio Ψ, i.e., for all s ∈ S, we have 1 ≤ rs ≤ Ψ, for a parameter Ψ that is
known in advance. Here, we not only investigate the fully dynamic case, but also the
incremental and the decremental scenario, where only insertions or only deletions of
sites are allowed. In the fully dynamic case, we achieve amortized expected update
time O(Ψ log4 n) and query time O(log n/ log log n). This improves the currently
best update time by a factor of Ψ. In the incremental case, we achieve logarithmic
dependency on Ψ, with a data structure that has O(α(n)) amortized query time and
O(log Ψ log4 n) amortized expected update time, where α(n) denotes the inverse Ackermann
function. For the decremental setting, we first develop an efficient decremental
disk revealing data structure: given two sets R and B of disks in the plane, we can delete
disks from B, and upon each deletion, we receive a list of all disks in R that no longer
intersect the union of B. Using this data structure, we get decremental data structures
with a query time of O(log n/ log log n) that supports deletions in O(n log Ψ log4 n)
overall expected time for disk graphs with bounded radius ratio Ψ and O(n log5 n)
overall expected time for disk graphs with arbitrary radii, assuming that the deletion
sequence is oblivious of the internal random choices of the data structures.
en
dc.format.extent
64 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Connectivity
en
dc.subject
Lower envelopes
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Dynamic Connectivity in Disk Graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00454-023-00621-x
dcterms.bibliographicCitation.journaltitle
Discrete & Computational Geometry
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
214
dcterms.bibliographicCitation.pageend
277
dcterms.bibliographicCitation.volume
71
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00454-023-00621-x
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0444