dc.contributor.author
Elia, Sophia
dc.contributor.author
Kim, Donghyun
dc.contributor.author
Supina, Mariel
dc.date.accessioned
2024-08-21T09:08:16Z
dc.date.available
2024-08-21T09:08:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42049
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41774
dc.description.abstract
Equivariant Ehrhart theory generalizes the study of lattice point enumeration to also account for the symmetries of a polytope under a linear group action. We present a catalogue of techniques with applications in this field, including zonotopal decompositions, symmetric triangulations, combinatorial interpretation of the -polynomial, and certificates for the (non)existence of invariant nondegenerate hypersurfaces. We apply these methods to several families of examples including hypersimplices, orbit polytopes, and graphic zonotopes, expanding the library of polytopes for which their equivariant Ehrhart theory is known.
en
dc.format.extent
52 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Ehrhart theory
en
dc.subject
Triangulations
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Techniques in Equivariant Ehrhart Theory
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00026-023-00673-z
dcterms.bibliographicCitation.journaltitle
Annals of Combinatorics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
819
dcterms.bibliographicCitation.pageend
870
dcterms.bibliographicCitation.volume
28
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00026-023-00673-z
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
0219-3094
refubium.resourceType.provider
WoS-Alert