dc.contributor.author
Vassena, Nicola
dc.date.accessioned
2024-02-22T09:20:04Z
dc.date.available
2024-02-22T09:20:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42016
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41739
dc.description.abstract
Multistationarity is the property of a system to exhibit two distinct equilibria (steady-states) under otherwise identical conditions, and it is a phenomenon of recognized importance for biochemical systems. Multistationarity may appear in the parameter space as a consequence of saddle-node bifurcations, which necessarily require an algebraically simple eigenvalue zero of the Jacobian, at the bifurcating equilibrium. Matrices with a simple eigenvalue zero are generic in the set of singular matrices. Thus, one would expect that in applications singular Jacobians are always with a simple eigenvalue zero. However, chemical reaction networks typically consider a fixed network structure, while the freedom rests with the various choices of kinetics. Here, we present an example of a chemical reaction network, whose Jacobian is either nonsingular or has an algebraically multiple eigenvalue zero. This in particular constitutes an obstruction to standard saddle-node bifurcations. The presented structural obstruction is based on the network structure alone, and it is independent of the value of the positive concentrations and the choice of kinetics.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
bifurcation analysis
en
dc.subject
chemical reaction networks
en
dc.subject
genericity methods
en
dc.subject
multistationarity
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Structural obstruction to the simplicity of the eigenvalue zero in chemical reaction networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/mma.9790
dcterms.bibliographicCitation.journaltitle
Mathematical Methods in the Applied Sciences
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
2993
dcterms.bibliographicCitation.pageend
3006
dcterms.bibliographicCitation.volume
47
dcterms.bibliographicCitation.url
https://doi.org/10.1002/mma.9790
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1099-1476
refubium.resourceType.provider
WoS-Alert