The prediction of inter-individual behavioural differences from neuroimaging data is a rapidly evolving field of research focusing on individualised methods to describe human brain organisation on the single-subject level. One method that harnesses such individual signatures is functional connectome fingerprinting, which can reliably identify individuals from large study populations. However, the precise relationship between functional signatures underlying fingerprinting and behavioural prediction remains unclear. Expanding on previous reports, here we systematically investigate the link between discrimination and prediction on different levels of brain network organisation (individual connections, network interactions, topographical organisation, and connection variability). Our analysis revealed a substantial divergence between discriminatory and predictive connectivity signatures on all levels of network organisation. Across different brain parcellations, thresholds, and prediction algorithms, we find discriminatory connections in higher-order multimodal association cortices, while neural correlates of behaviour display more variable distributions. Furthermore, we find the standard deviation of connections between participants to be significantly higher in fingerprinting than in prediction, making inter-individual connection variability a possible separating marker. These results demonstrate that participant identification and behavioural prediction involve highly distinct functional systems of the human connectome. The present study thus calls into question the direct functional relevance of connectome fingerprints. Mantwill et al. analysed the relationship between functional connectivity markers that are specific to individuals (i.e. brain fingerprints) and those predictive of behaviour. They reveal that these markers are unrelated and suggest an alternative perspective on the basis of individual signatures.