Temporary binding of visual features enables objects to be stored and maintained in the visual working memory as a singular structure, irrespective of its inherent complexity. Although working memory capacity is reduced in aging, previous behavioral studies suggest that binding is preserved. Using event-related brain potentials (ERPs), we tested whether stimulus encoding is different in younger (N = 26, mean age = 28.5) and older (N = 22; mean age = 67.4) participants in a change detection task. The processing costs of binding were defined by the difference between feature-alone (color or shape) and feature-binding (color–shape) conditions. The behavioral data revealed that discrimination ability was reduced in the feature-binding condition, and that this effect was more attenuated in older participants. A corresponding ERP effect was not found in early components related to visual feature detection and processing (posterior N1 and frontal P2). However, the late positive complex (LPC) was more often expressed in the feature-binding condition, and the increase in amplitude was more pronounced in older participants. The LPC can be related to attentional allocation processes which might support the maintenance of the more complex stimulus representation in the binding task. However, the selective neural overactivation in the encoding phase observed in older participants does not prevent swap errors in the subsequent retrieval phase.