dc.contributor.author
Bee, R. Maximilian
dc.contributor.author
Koch, Tobias
dc.contributor.author
Eid, Michael
dc.date.accessioned
2023-11-24T09:21:27Z
dc.date.available
2023-11-24T09:21:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41437
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41159
dc.description.abstract
In this article, we present a general theorem and proof for the global identification of composed CFA models. They consist of identified submodels that are related only through covariances between their respective latent factors. Composed CFA models are frequently used in the analysis of multimethod data, longitudinal data, or multidimensional psychometric data. Firstly, our theorem enables researchers to reduce the problem of identifying the composed model to the problem of identifying the submodels and verifying the conditions given by our theorem. Secondly, we show that composed CFA models are globally identified if the primary models are reduced models such as the CT-C model or similar types of models. In contrast, composed CFA models that include non-reduced primary models can be globally underidentified for certain types of cross-model covariance assumptions. We discuss necessary and sufficient conditions for the global identification of arbitrary composed CFA models and provide a Python code to check the identification status for an illustrative example. The code we provide can be easily adapted to more complex models.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
confirmatory factor analysis
en
dc.subject
identification
en
dc.subject
rank-deficient loading matrix
en
dc.subject
bifactor models
en
dc.subject
bifactor(S-1) model
en
dc.subject
CT-C( M-1) model
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A General Theorem and Proof for the Identification of Composed CFA Models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s11336-023-09933-6
dcterms.bibliographicCitation.journaltitle
Psychometrika
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1334
dcterms.bibliographicCitation.pageend
1353
dcterms.bibliographicCitation.volume
88
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s11336-023-09933-6
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Methoden und Evaluation
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1860-0980
refubium.resourceType.provider
WoS-Alert