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In this article, we present a general theorem and proof for the global identification of composed
CFA models. They consist of identified submodels that are related only through covariances between
their respective latent factors. Composed CFA models are frequently used in the analysis of multimethod
data, longitudinal data, or multidimensional psychometric data. Firstly, our theorem enables researchers
to reduce the problem of identifying the composed model to the problem of identifying the submodels
and verifying the conditions given by our theorem. Secondly, we show that composed CFA models are
globally identified if the primary models are reduced models such as the CT-C(M − 1) model or similar
types of models. In contrast, composed CFA models that include non-reduced primary models can be
globally underidentified for certain types of cross-model covariance assumptions. We discuss necessary
and sufficient conditions for the global identification of arbitrary composed CFA models and provide a
Python code to check the identification status for an illustrative example. The code we provide can be
easily adapted to more complex models.

Key words: confirmatory factor analysis, identification, rank-deficient loading matrix, bifactor models,
bifactor(S − 1) model, CT-C(M − 1) model.

Confirmatory factor analysis [CFA] models are ubiquitous in the social sciences. They are fre-
quently applied in multitrait-multimethod [MT-MM] research (e.g., Eid, 2000; Eid et al., 2003;
Jeon et al., 2018; Kenny, 1976; Kenny & Kashy, 1992), longitudinal or measurement of change
research (e.g., Courvoisier et al., 2008; Hedeker & Gibbons, 2006; Koch et al., 2018; Little, 2013;
McArdle &Nesselroade, 2014; Newsom, 2015) as well as in psychometrics (e.g., bifactor models
and applications, e.g., Cai et al., 2011; Gibbons et al., 2007; Gibbons & Hedeker, 1992; Jeon et
al., 2013; Rijmen, 2010), among many others.

For any statistical inference based on a CFA model to be meaningful, it is imperative that
the given model is identified. A frequently encountered definition of model identification can
be stated as follows. Consider a model with model-implied covariance matrix � = �(θ) as a
function of model parameters θ belonging to this model’s space of permissible parameter values.
The model is identified if two different parameter vectors from this model’s parameter space, say
θ1 and θ2, cannot produce the same model-implied covariance matrix. In other words, the model
is identified if �(θ1) �= �(θ2) whenever θ1 �= θ2 (Bollen, 1989; Jöreskog, 1978). If this property
holds for the whole parameter space, the model is identified everywhere. This is in contrast to
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generic identification that allows for this property not to hold on negligible sets (more formally,
sets of measure zero, see Bekker & ten Berge, 1997).

Identification is a necessary condition for the model parameters to be uniquely estimable
from the data (Bollen, 1989). That is, repeated applications of the same model to the same data
may result in differing conclusions if the model is not identified. Empirically, the application
of underidentified models has been found to give misleading parameter estimates, which cannot
be replicated in different samples (Kenny & Kashy, 1992), as well as divergent solutions and
improper estimates (Geiser et al., 2014).

There is a range of well-known necessary conditions for the identification of CFA models
and structural equation models [SEM] (Anderson & Rubin, 1956; Bekker et al., 1994; Bollen,
1989). Moreover, there is a great body of research establishing rules for the local identification
of CFA models (e.g., Anderson & Rubin, 1956; Bekker, 1989; Bekker et al., 1994; Bollen, 1989;
Reilly, 1995; Shapiro, 1985; Wegge, 1996). These rules determine the identification of a model
for all parameters in an open neighborhood of some point of the parameter space.

Nevertheless, even if a model is locally identified everywhere, it can still be globally underi-
dentified (Bollen, 1989; Reilly, 1995) and there exist neither general sufficient nor necessary con-
ditions for the global identification for an arbitrary CFA model (Bollen, 1989; Grayson &Marsh,
1994).Hence, practitioners often resort to proving the identification of a givenmodel algebraically.
For the parameter vector θ , this is done by finding the inverse function of themodel-implied covari-
ance matrix �(θ). This process can become practically infeasible if it involves solving multiple
(generally nonlinear) equations simultaneously (Bollen, 1989).

However, models can be grouped by the patterns they share in their respective loading, factor,
or error covariance matrices. These patterns can then be exploited to derive rules that determine
the global status of identification for a whole subclass of models. Davis (1993) showed which
residual covariance and loading patterns imply identification of models in which each item has
factor complexity one, that is, nonzero loading for one factor only. These sufficient conditions
were extended by Reilly (1995) to necessary as well as sufficient ones for the same class of
models. In another work, Reilly and O’Brien (1996) stated identification conditions for the factor
loadings in models where each factor has at least one item of factor complexity one.

As another example, Grayson and Marsh (1994) showed that any CFA model with diagonal
error covariancematrix� and block-diagonal factor covariancematrix�with all blocks saturated
is not identified if its loading matrix, � = (�1|�2| · · · ), has one or more submatrices �i or one
or more pairs of submatrices (� j |�k) with linearly dependent columns. Based on this result,
Grayson and Marsh (1994) provided necessary and sufficient conditions for the identification of
MT-MM models.

Fang et al. (2021) building on the work of Anderson and Rubin (1956) give identification
conditions for so-called two-tier bifactor models. These models consist of two submodels with
diagonal factor covariance matrices, that is, uncorrelated factors. Across models, only the general
factors of each submodel are allowed to correlate.

In the present article, we are equally concerned with the process of combining submodels to
form a larger model, but we abstract from any specific modeling framework, such as MT-MM or
bifactor models. Instead, we broaden the scope and introduce a subclass of CFAmodels we denote
composed models. We give a theorem stating not only necessary but also sufficient conditions
for their global identification and give recommendations on how to deal with the challenges
presented by these models. The aim of this study is to supply researchers with the necessary
theoretical foundations and practical guidelines that enable them to better understand why certain
models behave the way they do and ensure the identification of the models they work with.

In order to delineate the notion of a composed model, we consider the following scenario.
A researcher investigates the relationship between two constructs of interest in a population,
expressed by two separate CFAmodels, which we call the primary models. Beyond the covariance



1336 PSYCHOMETRIKA

Figure 1.
A bifactor ESEM model given by items X ji , general factor NF , and specific factors SXi , j ∈ {1, 2}, i ∈ {1, 2, 3}, on
the one hand, and a two-factor model with factors P and N indicated by their respective items, Pi , Ni , i ∈ {1, 2}, on the
other. In the bifactor ESEM model, the exploratory loadings are shown with dotted lines. There are no cross-loadings,
but all factors are correlated across models. Cross-model covariances are represented by dashed lines. The nomenclature
is chosen to resemble the model employed by Tóth-Király et al. (2017) relating need fulfillment to positive and negative
affect. Analogously to Figs. 2 and 3, the parameter labels have been omitted.

matrices of the individual models, the researcher is particularly interested in the covariances
between factors of the first and factors of the second primarymodel. To estimate these covariances,
the two primary models must be combined into a larger model, incorporating all items from both
primary models, which we refer to as the composed model. However, items from one primary
model are assumed not to load on factors of the other primary model, such that there are no new
loading parameters introduced in the composed model. Put differently, composed models can be
considered general structural equation models, in which factors defined in distinct measurement
models are correlated or related in a latent path model (for an overview, seeWang &Wang, 2012).

Numerous examples can be found in the literature where the factors in some CFA model
are related to a single criterion such as, for example, task performance (Debusscher et al., 2017),
humor (Christensen et al., 2018), or life satisfaction (Chen et al., 2012). A specific instance of
this type of model is depicted in Fig. 1. It represents the approach employed by Tóth-Király et al.
(2017) to relate need fulfillment, measured by a bifactor exploratory structural equation model
[ESEM] (see, e.g., Marsh et al., 2014), to positive and negative affect, measured by a model with
two correlated factors.

As another example, Plieninger and Meiser (2014) validated the response processes in a
multiprocess item response theory [IRT] model with response style scales. With the multiprocess
IRTmodel as the first primarymodel, the second onewas given by analyzing the scales for extreme
as well as mid response styles, forming parcels, and modeling them with a correlated traits-
correlated uniqueness [CT-CU] model. In the original article, the authors used latent regression
between the primary models based on theoretical considerations. Latent regression—and any
other linear dependency that can be represented in a path model—is a function of the latent
variances and covariances. Because we wish to abstract from any specific path model, we state
our theorem in terms of these fundamental parameters they are built on. Therefore, this article
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Figure 2.
A composed model with a CT-CUmodel and a multiprocess IRTmodel as primary models. The (restricted) CT-CUmodel
consists of factors ERS and MRS indicated by their respective items. Residual variables of items ERSi and MRSi are
correlated for every i , i ∈ {1, 2, 3}. The multiprocess IRT model is given by factors P I , P I I , P I I I . The auxiliary latent
variables Ps∗i are indicated by dichotomousmanifest variables Psi with unit loadings. (Ps

∗
2 and Ps∗3 are pseudo-variables

and can be identified with P I I and P I I I , respectively.) There are no cross-loadings, but all factors are correlated across
models. Cross-model covariances are represented by dashed lines. This is a simplified version of the model employed by
Plieninger and Meiser (2014) to relate response styles and IRT processes, in which the factors are not simply correlated
across models, but the process factors are regressed on the response style factors, and there is an additional criterion
variable. Analogously to Figs. 1 and 3, the parameter labels have been omitted.

lays the groundwork for the discussion of arbitrary path models in composed models, but it is
beyond its scope. The correlational composed model underlying the latent regression employed
by Plieninger and Meiser (2014) is shown in Fig. 2.

Our theorem covers combinations of more complex models as well such as multiconstruct
growth curve models (Bollen & Curran, 2005) or latent state-trait [LST] models (e.g., Schmitt,
2000; Steyer et al., 2012). A schematic example of the former is given in Fig. 3: Two constructs,
measured by two distinct growth curve models, are put in relation to another via occasion-specific
correlations on the one hand and correlated intercept aswell as slope factors on the other. However,
in some applications of these kinds of longitudinal models the problem of autocorrelated errors
might arise. In the Discussion section, we explain how correlated errors can be handled within
our approach.

Finally, as a another example of a composed model consisting of more complex primary
models that are prominently applied in the social sciences, consider Fig. 4. The model consists of
two bifactor models with one general and three specific factors each (Reise, 2012). The composed
model obtained by only considering the black lines is a multiconstruct bifactor model (Eid et al.,
in preparation; Koch et al., 2018). Because we will reference this example throughout the article
and use it to illustrate how our theorem can be applied in practice, all model parameters (i.e.,
loadings, variances, and covariances as well as errors) are explicitly given.

In the specific model chosen, both primary models are bifactor reformulations of hierarchical
G-factor models (Markon, 2019; Reise, 2012). That is, their loading structures are derived from
the Schmid–Leiman solution of a hierarchical model (Schmid&Leiman, 1957; Yung et al., 1999).
To see what this implies, note that the loadings of the items on the specific factors need to be set
to unity because there are only two items per factor. Then, because loadings on the G-factor in
the bifactor model are equal to the product of the path coefficients along the respective paths in
the hierarchical model, for each facet (i.e., for each i) the loadings of the items X ji , respectively,
Y ji on GX , respectively, GY are equal and therefore linearly dependent on the corresponding
loadings on the specific factors SXi , respectively, SY i .

We emphasize, however, that the sufficient and necessary conditions we state in our theorem
hold not only for the loading structure given in this example, but for all possible loading structures,



1338 PSYCHOMETRIKA

Figure 3.
A composed model with two growth curve models (see, e.g., Bollen & Curran 2005) given by items X ji , occasions OXi ,
intercept factor I ntX , slope factor SloX as well as items Y ji , occasions OYi , intercept factor I ntY , slope factor SloY ,
j ∈ {1, 2} and i ∈ {1, 2, 3}, respectively. As in Fig. 4, there are no cross-loadings. All factors are correlated across models,
and cross-model covariances are represented by dashed lines. Loadings, (co-)variances, and errors have not been labeled
for the sake of readability because the model is not discussed further in this article.

Figure 4.
A composed model with two bifactor models as primary models, given by items X ji , general factor GX , and specific
factors SXi as well as items Y ji , general factor GY , and specific factors SY i , j ∈ {1, 2} and i ∈ {1, 2, 3}, respectively.
Items for the first primary (bifactor) model do not load on the second primary (bifactor) model and vice versa. Black
dashed lines represent covariances on the diagonal of the cross-model factor covariance matrix �Y X as given in Eq. (9),
and gray dashed lines represent off-diagonal covariances in �Y X . If the covariances represented by the gray dashed lines
are fixed to zero as in Eq. (10), the model is a multiconstruct bifactor model (see Koch et al., 2018).
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such as, for example, essentially τ -equivalent models (Steyer, 2015), the Green–Yang factor
structure (Green & Yang, 2018), or trifactor models (Jeon et al., 2018). In fact, as the variety
of the previous examples indicate, our theorem even holds not only for bifactor models but for
all models that share the present form: Two primary models are combined to form a composed
model, and loadings as well as error covariances are set to zero across the primary models.

However, as Eid et al. (2018) showed, even in the simple case of a construct validation study,
identification issues can arise. Specifically, a composed model predicting academic achievement
by all factors of a bifactor model measuring intelligence is not identified if the bifactor model has
an essentially τ -equivalent loading structure. That is, although both primarymodels are identified,
the composed model is not. In the present article, we replicate this counterintuitive finding for
a much larger class of models under which the model considered by Eid et al. (2018) can be
subsumed.

The practical relevance of our theorem lies in the fact that it not only provides simple rules to
determine the status of identification of a given CFA model of the type we discuss in this article,
but that it is descriptive of the pattern of parameters that are underidentified and how to achieve
identification algorithmically. Lastly, we conclude the article by introducing another class of CFA
models we denote reduced models and explaining how they circumvent identification issues for
the composed model. Throughout the article, we illustrate important results with the help of our
introductory example.

A mathematically rigorous treatment of our results is provided in Supplementary Material
such that interested readers can retrace all steps of our theoremand proofs. It gives exact definitions
for the concepts presented more colloquially in the main body of the text and states the central
result, its proof, and corollaries in terms of these definitions. In Supplementary Material, we also
provide a more detailed definition of reduced models than is given in the main body of the text.
Lastly, along with this article we provide a Python code that performs the identification analysis
for the introductory example, which is easily adapted to other situations.

1. Central Result

Consider a CFA model given by1

�c = �c�c�
T
c + �c (1)

with (block) loading matrix

�c:=
(

�1 0
0 �2

)
, (2)

(block) latent variable covariance matrix

�c =
(

�1 �T
21

�21 �2

)
, (3)

and (block) error covariance matrix

�c =
(

�1 0
0 �2

)
. (4)

1In line with the established literature, we assume that the mean structure is identified and do not consider it in the
present article (see, e.g., Bollen, 1989).
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We refer to this model as the composed model. The submatrices on the diagonals in Eqs. (2)–
(4) in turn constitute CFA models given by the model equations

�1 = �1�1�
T
1 + �1 (5)

and

�2 = �2�2�
T
2 + �2. (6)

The two models defined by Eqs. (5)–(6) will be the primary models.
The only submatrix not contained in either primary model is �21. It contains all covariances

between any factor from the first primary model and any factor from the second primary model.
We subsequently refer to these covariances as the cross-model factor covariances and to �21 as
the cross-model factor covariance matrix.

Note that �21 might be constrained, which our theorem explicitly takes into account. In the
present context, we limit ourselves to linear constraints that do not introduce newparameters (such
as latent regression weights that can be identified once the covariances have been identified). They
make up the overwhelming majority of commonly applied constraints for covariances (Bekker,
1989; Bollen, 1989), since they include, for example, setting some covariance to zero or to equal
some other covariance.

The terminology introduced for our introductory example is in line with this definition: The
model depicted in Fig. 4 is a composed model with two bifactor models as primary models, each
with one general and three specific factors. Its primary models have respective loading matrices

�X :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
1 0 0 1
0 1 0 γX2
0 1 0 γX2
0 0 1 γX3
0 0 1 γX3

⎞
⎟⎟⎟⎟⎟⎟⎠

and �Y :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
1 0 0 1
0 1 0 γY2
0 1 0 γY2
0 0 1 γY3
0 0 1 γY3

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

as well as factor covariance matrices

�X :=

⎛
⎜⎜⎝

σ 2
SX1

0 0 0
0 σ 2

SX2
0 0

0 0 σ 2
SX3

0
0 0 0 σ 2

GX

⎞
⎟⎟⎠ and �Y :=

⎛
⎜⎜⎝

σ 2
SY1

0 0 0
0 σ 2

SY2
0 0

0 0 σ 2
SY3

0
0 0 0 σ 2

GY

⎞
⎟⎟⎠ . (8)

Lastly, all error variables are assumed to be uncorrelated, such that the error covariance
matrices �X and �Y of both bifactor models are diagonal. The only submatrix in the composed
model yet to be defined is the cross-model factor covariance matrix �Y X (i.e., �21 in the general
definition—the lower-right submatrix of �c), which is given by

�Y X :=

⎛
⎜⎜⎝

σSX1SY1 0 0 σGX SY1
0 σSX2SY2 0 σGX SY2
0 0 σSX3SY3 σGX SY3

σSX1GY σSX2GY σSX3GY σGXGY

⎞
⎟⎟⎠ . (9)
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As bifactor models, the primary models are identified (see Steyer et al., 2015, for details). The
central question thus becomes: Underwhat conditions is the composedmodel identified, assuming
that both primary models are identified by themselves? The answer is provided by the following
theorem.

Theorem 1. Let the primary models be globally identified, and let all, if any, constraints on �21
be linear and not introduce new parameters. Then, the following holds.

(a) The composed model is [generically] globally identified if and only if �1 ⊗ �2 =
�1(θ�1) ⊗ �2(θ�2) is injective for [almost] all (θ�1, θ�2) on the parameter space
containing the cross-model covariance parameters arranged in �21.

In particular, this implies the following.
(b) �1 = �1(θ�1) and �2 = �2(θ�2) having full rank for [almost] all (θ�1 , θ�2) is

sufficient for the composed model to be [generically] globally identified.
(c) If �21 is unrestricted, �1 = �1(θ�1) and �2 = �2(θ�2) having full rank for [almost]

all (θ�1, θ�2) is necessary and sufficient for the composed model to be [generically]
globally identified.

If the primary models are globally identified everywhere, then both variants of Items (a)–(c)
hold. If the primary models are only generically globally identified, then only the generic variants
of Items (a)–(c) hold.

Proof. Theorem 1 constitutes a summary of Theorem S.3 and its corollaries in Supplementary
Material. Here,we give a concise but self-contained proofwith pointers to SupplementaryMaterial
(S) such that the interested reader can find a formal justification for each step.

Recall that a map f : U → V is injective on U if and only if f (x) = f (y) implies x = y for
all x, y ∈ U . The kernel of a linear map A, denoted ker A, is the subspace containing all vectors
that are mapped to the zero vector under A. Lastly, the rank of a linear map is the dimension
of its image, which, in the case of matrices, corresponds to the maximal number of linearly
independent columns, respectively, rows. Relevant references can be found in the introduction to
Supplementary Material.

We start by proving Item (a) in Theorem 1 [which is a restatement of Eq. (S.20)]. For any
fixed parameters (θ�1 , θ�2), the tensor product�1⊗�2 = �1(θ�1)⊗�2(θ�2) is a vector-valued
representation of the matrix-valued linear map �2�21�

T
1 = �2(θ�2)�21�

T
1 (θ�1) [taken as a

function of �21, see Eq. (S.24a)]. The matrix �2�21�
T
1 , however, is a submatrix of the model-

implied covariance matrix �c, and thus, uniquely determining the corresponding parameters is a
necessary requirement for the unique determination of�c and thus the identification of the model
[see Eq. (S.21b)].

By the definition of injectivity, if the condition given in Item (a) is fulfilled, it implies that no
two sets of cross-model factor covariance parameters can result in the same matrix �2�21�

T
1 =

�2(θ�2)�21�
T
1 (θ�1) and thus �21 is uniquely determined. If the condition fails on a zero-

measured set of parameters (θ�1 , θ�2), this set is zero-measured in the whole parameter space as
well such that �21 is uniquely determined for almost all parameter vectors.

To complete the proof of Item (a), we observe that three crucial assumptions—that the primary
models are [generically] globally identified, that items in the composed model only load on their
respective primary model’s factors, and that errors are uncorrelated across models—imply that
the only yet undetermined parameters introduced in the composed model are the cross-model
factor covariances in �21. The unique determination of the parameters contained in �21 is thus
also sufficient to identify the full model.

Because �1 ⊗ �2 = �1(θ�1) ⊗ �2(θ�2) is a linear map for any fixed (θ�1 , θ�2), it is
injective on some subspace if and only if its kernel intersected with this subspace consists solely
of the zero vector (we say the subspace is trivial). This condition, in turn, is determined by the
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column ranks of �1 = �1(θ�1) and �2 = �2(θ�2) as well as the restrictions on �21 (i.e., the
equations governing the corresponding subspace). Specifically, if the loading matrices have full
column ranks, then their kernels are trivial. Since ker�1⊗�2 is composed of the kernels of either
matrix [cf. Lemma S.7], it is then trivial as well. But then �1 ⊗ �2 is injective, giving Item (b)
by application of Item (a).

On the other hand, if any of the kernels of �1 and �2 are non-trivial and �21 is unrestricted,
then ker�1 ⊗ �2 cannot be trivial either and therefore �1 ⊗ �2 cannot be injective. Again, by
Item (a), the model is not identified and we obtain Item (c), which concludes the proof. ��

To elaborate, Item (b) in Theorem 1 states that working with primary models that have
full-rank loading matrices (and therefore linearly independent columns) for [almost] all loading
parameter values ensures identification of the composed model, no matter how the covariances
in �21 have been linearly restricted, if at all. Conversely, and somewhat surprisingly, from Item
(c) we learn that even given the assumption that both primary models are identified, if there are
no restrictions on the cross-model factor covariances in �21, then for the composed model to be
[generically] identified, both loading matrices �1 and �2 must have full rank for [almost] all
loading parameter values.

However, in applied research, rank-deficient loading matrices of the primary models often
arise from theoretical reasons and thus cannot be modified without modifying the underlying
theory. Instead, researchersmust restrict the cross-model covariances to obtain an identifiedmodel.
As can be seen from rearranging the product �2�21�

T
1 = �2(�1�

T
21)

T , �2 acts on the columns
of �21, whereas �1 acts on its rows. This implies that, firstly, if �1 = �1(θ�1), respectively,
�2 = �2(θ�2) are rank-deficient for [almost] all (θ�1 , θ�2), no row, respectively, column in �21
can be fully unrestricted. In other words, no factor from a primary model with rank-deficient
loading matrix can covary with all factors of the other primary model. Moreover, in terms of
structural requirements for�1,�2, and�21, this means that, loosely speaking, if there are linearly
dependent columns in �1, respectively, �2, �21 should not reflect this dependency in its rows,
respectively, columns. More precisely, to obtain an identified composed model, �21 should not
be decomposable into vectors from ker�1 in its rows added to vectors from ker�2 in its columns
[cf. Proposition S.8].

In the case of restricted cross-model covariances and rank-deficient loading matrices, neither
Item (b) nor Item (c) applies and the condition in Item (a) must be checked directly. This can be
achieved by purely algebraic deliberations, such as the calculation of the kernel of �1 ⊗ �2 and
comparing the resulting equations with those governing the restrictions on �21. Alternatively, it
can be verified computationally. Indeed, injectivity of �1 ⊗ �2 on the subspace of cross-model
covariance parameters is obtained if the generating set of ker�1 ⊗ �2 cannot produce vectors
in this subspace and vice versa. This is the case if and only if the sum of the dimensions of these
spaces equals the dimension of their sum space, which holds because in Theorem 1 all restrictions
on�21 are assumed to be linear such that the underlying space is a linear subspace. This condition,
in turn, can be translated into an equation involving ranks of matrices containing the respective
generating sets [see Corollary S.9]. Such an equation can be checked by a modern Computer
Algebra System [CAS], such as the free SymPy library (Meurer et al., 2017) for Python. An
immediate corollary is that since the rank of �1 ⊗ �2 is equal to the product of the ranks of �1
and �2, the number of free covariances in �21 cannot exceed this product.

In summary, we obtain the following algorithm to resolve underidentification.

1. Calculate the ranks of both primary models’ loading matrices for [almost] all loading
parameter vectors (θ�1 , θ�2).

2. The product of their ranks then is equal to the maximum number of “free” elements
permitted in �21.
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3. Restrict the remaining number of covariances in �21 in a way that leads to identification
of the composed model, which can be checked, for example, by verifying Eq. (S.38)
algorithmically as demonstrated in the Python code provided as Supplementary Material
to this article.

To give an illustration, we tend to our introductory example again. By considering Eq. (7), we
find that rank�X = rank�Y = 3 for all (γX2, γX3, γY2, γY3); that is, both loading matrices are
rank-deficient. Note that this still holds if there were more than two items per specific factor with
additional loadings as long as the models are Schmid–Leiman solutions to hierarchical models
(Yung et al., 1999).

As explicated above, this implies that, firstly, there can be neither fully unrestricted rows
nor columns in �Y X . Secondly, the maximum number of free parameters permitted in �Y X

is rank�X · rank�Y = 3 · 3 = 9. Inspecting �Y X as defined in Eq. (9), it follows from both
preceding deliberations that the model in Fig. 4 is not identified: Both the last row and last column
are saturated, and there are 10 > 9 free covariances in �Y X .

To identify the model without changing the loading structure, we set all but the covariances
on the diagonal in �Y X to zero. Then only GX and GY as well as every kth specific factor SXk
and SYk from each model are allowed to have nonzero covariance, such that we obtain the altered
(now diagonal) cross-model factor covariance matrix

�̃Y X :=

⎛
⎜⎜⎝

σSX1SY1 0 0 0
0 σSX2SY2 0 0
0 0 σSX3SY3 0
0 0 0 σGXGY

⎞
⎟⎟⎠ . (10)

We use the tilde to indicate that this covariance matrix belongs to a new model that differs from
the one with covariance matrix �Y X . Restricting �Y X to obtain �̃Y X corresponds to removing
all gray dashed lines from Fig. 4. As mentioned above, this cross-model factor covariance matrix
renders the model in Fig. 4 a multiconstruct bifactor model (see Koch et al., 2018) with a loading
structure according to the hierarchical G-factor model.

It is clear that �̃Y X fulfills the necessary identification conditions given above; that is, there
are 4 ≤ 9 free covariances and no saturated rows nor columns. Sufficiency of the structure in
�̃Y X is verified in the aforementioned Python script.

Alternatively, the loading matrices can be modified to have full rank for almost all loading
parameter values by fixing the loadings of the first item of the general factor to one and setting
the other loadings free (i.e., imposing a τ -congeneric loading structure; Steyer 2015). Note that
the loadings of the items on the specific factors can be set free only if there are at least three items
per factor (Steyer et al., 2015). Identification of the composed model then follows from Item (b)
in Theorem 1. For completeness, we remark that a composed model with only two indicators per
specific factor but unrestricted loadings can be identified through cross-model covariances of the
specific factors. However, because the intent is to show how identification of a composed model
is achieved with identified primary models we do not discuss this case here.

If a τ -congeneric loading structure is used, identification is achieved by adding parameters to
the model. It is a well-known fact that there are CFA models for which the more general version
may be identified,whereas themore parsimonious is not Bekker et al. (1994).As a simple example,
consider a model with two factors indicated by two items each and unrestricted loadings. Bollen
(1989, pp. 244–245) showed that the model is identified only if the factors are correlated, whereas
the restricted and therefore more parsimonious model with uncorrelated factors is not. The same
problem can arise in testing for measurement invariance. For example, Wu and Estabrook (2016)
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show that researchers can obtain unidentifiedmodelswhen simply addingmeasurement invariance
constraints to a baseline model for ordered categorical outcomes.

If the loading matrix is specified to have full rank for not all, but almost all parameter values
(i.e., yielding a generically identified composed model), there are zero-measured regions of the
parameter space where the model is not identified. When parameter values lie close to such a
region in an empirical application, then this results in an empirically unidentified model (see,
e.g., Eid et al., 2017; Grayson & Marsh, 1994; Kenny & Kashy, 1992). This, however, is not the
case for models with loading matrices that have full rank simply due to their configuration (i.e.,
their pattern of zero and nonzero entries). The main advantage of these models is that they allow
researchers to restrict loadings at will (e.g., to test for measurement invariance) while specifying
any cross-model covariance [cf. Item (b)]. We discuss these models in the next section.

2. Reduced Models

In the following, we discuss a specific type of model termed reduced model and show that
taking identified reduced models as primary models results in an identified composed model. We
illustrate our findings with the aid of our running example. In Supplementary Material, we give
exact definitions and proofs to the deliberations in this section and further distinguish two types
of reduced models to be able to determine in which case the composed model is only generically
identified.

Recall that an item of factor complexity one is an item that has a nonzero loading for exactly
one factor (Reilly, 1995). Furthermore, we say that a factor is associated with an item if this item
has nonzero loading on this factor. Consider some CFA model that contains a factor associated
with one or more items with factor complexity one. These items can be considered reference items
of this factor, since their variances are assumed to be fully determined by this factor’s variance
and the residual (error) variance. In other words, the psychometric meaning of this factor depends
on these reference items.

Additionally, assume that there are items of factor complexity two that load on this factor plus
one other factor. Although they cannot be considered reference items for the first factor, variation
in these items is solely due to variation in the two factors and the residual terms. This variation,
in turn, can be interpreted in relation to the variation in the reference items of the first factor.

Put differently, if we disregard the first factor, then variation in these items is solely due to
the second factor they are associated with, plus the residual. Holding the first factor constant thus
renders these items reference items for the second factor. By the same logic, we can examine
the remaining factors for reference items holding previously considered factors constant until we
have checked every factor in themodel. In summary, we can identify unique contributions to every
factor if it is possible to sequentially find factors with reference items, that is, items that load on
one factor and not others, disregarding factors already equipped with such items. This is the case
if the loading matrix of a model is structured in a way that there is the hypothetical possibility of
sequentially removing factors with items of factor complexity one.

It can happen that no such sequence can be found because the factor complexity of all items
is greater than one. Nevertheless, it might be possible that dropping a factor from the model
altogether, and thus reducing it, allows for such sequences to exist. For this reason, we deem
models for which these sequences exist reduced models.

To illustrate, consider the loading matrix of any of the two primary models depicted in Fig. 4
and defined in Eq. (7), say �X . All items have factor complexity two; that is, they have nonzero
loadings (except for a null set) on exactly two factors for this primary model. This means that it
is not possible to begin any sequence finding reference items for every factor because that would
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Figure 5.
A composed model with two reduced bifactor models as primary models. A reduced bifactor model with items X ji ,
general factor GX , and specific factors SX2 and SX3, composed with another reduced bifactor model with items Y ji ,
general factor GY , and specific factors SY2 and SY3 for j ∈ {1, 2} and i ∈ {1, 2, 3}. As the non-reduced version depicted
in Fig. 4, items for the first primary (bifactor) model do not load on the second primary (bifactor) model and vice versa.
In comparison with the model depicted in Fig. 4, note the additional covariances (black solid lines) that are allowed to
be nonzero in the bifactor(S − 1) model (Eid et al., 2017). The gray dashed lines between the specific factors across the
primary models are additional covariances that are allowed to be nonzero while still obtaining an identified composed
model.

require us to start with at least one item with factor complexity one. Consequently, the primary
models as defined above and depicted in Fig. 4 are not reduced models.

Nevertheless, dropping any specific factor renders this model a reduced model. Indeed, first
observe that this reduces the factor complexity of all items that previously loaded on the dropped
specific factor to one. For example, pick the first specific factor to be dropped from the model and
redefine the bifactor model as the model with reduced loading matrix

�R
X :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 1
1 0 γX2
1 0 γX2
0 1 γX3
0 1 γX3

⎞
⎟⎟⎟⎟⎟⎟⎠

. (11)

We use the superscript R to denote that this loading matrix belongs to a new (reduced) model. It is
depicted in Fig. 5 with items Y ji , j ∈ {1, 2} and i ∈ {1, 2, 3}. Now, the general factor is associated
with items X11 and X12, corresponding to rows 1 and 2 of �R

X , as items of factor complexity one.
Then, a sequence assigning reference items to every factor while disregarding factors already
equipped with such items must start with the general factor, since it is the only factor in �R

X
associated with items of factor complexity one. Disregarding the general factor, the remaining
specific factors both only contain items of factor complexity one, which concludes the sequence.
In other words, we determine that the primary models in Fig. 5 are reduced models by scanning
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their loading matrices for items of factor complexity one, disregarding the corresponding factors
and repeating this process until all columns have been checked.

In the given example, assume that the (remaining) specific factors are correlated and assume
that the general factor is uncorrelated with the specific factors, as depicted in Fig. 5. Then, the
model with loading matrix �R

X can be denoted a bifactor(S − 1) model (Eid et al., 2017), which,
in the context of MT-MM research, is known as a correlated traits-correlated methods minus
one [CT-C(M − 1)] model (Eid, 2000). As Geiser et al. (2008) pointed out, there are always as
many different possible CT-C(M − 1) models as there are methods for any given data. Another
example of a reduced model is the bifactor(S · I − 1) model (Eid et al., 2017). These models
have been shown to possess good psychometric properties and are known for high convergence
rates, low number of improper solutions, and a clear psychometric meaning of the latent factors
(Eid, 2000; Eid et al., 2017, 2023; Geiser et al., 2008). Which specific factor is dropped from
the model, that is, which items loading on the general factor have factor complexity one and thus
serve as reference items for the general factor, has implications for the meaning of the general
and remaining specific factors (Geiser et al., 2008). However these considerations go beyond the
scope of the present article.

In any case, reduced models are not limited to the particular conceptualization of latent
variables in the associated measure theoretical framework. The concept of a reduced model is
uniquely concerned with the configuration of the loading matrix of the model of interest. To see
how reduced models lead to identified composed models, recall from the previous section that
�X is rank-deficient. On the other hand, it is easily verified that �R

X has full rank. In fact, every
reduced model has this property. Indeed, by removing columns corresponding to factors that are
associatedwith items of factor complexity one, we verify that these columns cannot be represented
by the other columns in the loading matrix (because they are nonzero in rows for which the other
columns are zero) and since this has to hold for all columns, this property is sufficient for the
matrix to have full column rank. From Item (b) of Theorem 1, it then follows immediately that
composed models consisting of identified reduced primary models are always identified.

To see how the introductory example can be identified by the use of reduced models, define
�R

Y similarly to�R
X—that is, by removing the first column from�Y . The resulting bifactor(S−1)

models are still identified (Eid et al., 2017). Then, besides removing the rows and columns of�X ,
�Y , and �Y X corresponding to the dropped specific factors in the bifactor models, no change
is necessary to obtain an identified composed model. The final composed model is depicted in
Fig. 5. Moreover, additionally to the covariances between the general factors of one primary
model and the specific factors of the other primary model, which were already included in the
model depicted in Fig. 4, we can also allow for correlations between the specific factors across
the primary models, associated with the gray dashed lines in Fig. 5, which results in the reduced
but fully unrestricted cross-model covariance matrix

�R
Y X :=

⎛
⎝σSX2SY2 σSX3SY2 σGX SY2

σSX2SY3 σSX3SY3 σGX SY3
σSX2GY σSX3GY σGXGY

⎞
⎠ . (12)

Again, this is because the primary models are reduced models. Thus, the composed model is
identified, regardless of the structure of �R

Y X , such that allowing for additional covariances to be
nonzero in �R

Y X preserves identification.
In summary, working with reduced models simplifies the problem of identification of the

composed model to the identification of the primary models. There exists a body of research that
is devoted to such a modeling framework and the identification of reduced models, for example,
in the context of MT-MM analysis and bifactor applications with a reduced number of specific
factors (e.g., Geiser et al., 2008, Koch et al., 2018). Reduced models permit researchers to leave



R. MAXIMILIAN BEE ET AL. 1347

the cross-model factor covariances of the primary models unrestricted, which may be beneficial
for the interpretation of the parameters in the composed model (e.g., Eid et al., 2018).

3. Discussion

In the present article, we considered the class of composed CFA models. They consist of
identified submodels such that, in the complete model, items of one submodel show no cross-
loadings on the factors of the other model and error variables are uncorrelated across models.
Thus, the submodels only relate to one another via the covariances of their respective common
factors.

Although the assumptions of no cross-model loadings and uncorrelated residuals across the
primary models may be frequently violated in applied research and may appear strict at first
glance,2 note that, by the aid of auxiliary factors, the latter can be made without loss of generality
and the former can be weakened in some cases. For example, it is straightforward to redefine
residual variables as latent variables and incorporate them into the structural part of the model,
such that residual covariances across models become cross-model (factor) covariances. For this
purpose, an auxiliary factormust be definedwith the corresponding itemas its unique indicator. For
a composed model with nonzero cross-model error covariance matrix �21, redefine the primary
models’ matrices

�̂i :=
(
�i Ii

)
, (13a)

�̂i :=
(

�i 0
0 �i

)
, (13b)

�̂i :=0, (13c)

for i ∈ {1, 2} and appropriately sized identity matrices Ii . Moreover, let

�̂21:=
(

�21 0
0 �21

)
(13d)

and define �̂c, �̂c, and �̂c accordingly. Then,

�i = �̂i �̂i �̂
T
i (14a)

= �i�i�
T
i + �i (14b)

for i ∈ {1, 2}. Hence, the primary models’ status of identification is unchanged by this procedure.
On the other hand, the equation

�̂c = �̂c�̂c�̂
T
c + 0 (15)

2We thank an anonymous reviewer for rightly pointing out this fact which ultimately led to the subsequent addendum.
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defines a new composed model without error variables. This way the residual covariances can be
considered as cross-model covariances and are therefore subject to the identification conditions
given in our theorem. Of course, now the modified counterparts of the loading and cross-model
covariance matrices must be used to determine identification. Because the concatenation of the
original primarymodels’ loadingmatriceswith identitymatrices renders them rank-deficient, there
need to be restrictions on the (augmented) cross-model covariancematrix, now also containing the
residual covariances. This implies that the error variables cannot all be correlated across models,
even if the (original) loading matrices have full rank. Prospective research could determine which
type of cross-model error covariances are possible for which kinds of composed models. In
any case, researchers should be aware that allowing for correlated residuals might change the
psychometric meaning of some, or even all, factors in the model.

In some cases, cross-model loadings can be dealtwith by latent regression on auxiliary factors,
which is more involved and beyond the scope of this article. Nevertheless, we sketch it here to
show that certain instances of composedmodels with cross-model loadings are still covered by our
theorem. Items for which cross-model loadings are assumed must have their measurement error
variables redefined as factors. Former factor loadings are replaced with latent regressions on these
new factors within the respective primary model (and thus the regression residuals take the role of
the measurement error), again without changing its identification status. In the composed model,
cross-model covariances are specified between the redefined item-specific residual variables in
one primary model and the factors of the other primary model on which the items are assumed to
show cross-loadings. These cross-model covariances, which are identified under the conditions
given in our theorem, can be used in a cross-model latent regression analysis. Then, any cross-
model loading of interest is given by the regression coefficient of the path connecting the redefined
residual variable in the first primary model with the associated factor of the other primary model.

Nevertheless, if cross-model loadings for a majority of items are included, we no longer deem
it appropriate to denote the resulting model a composed model. In our view, the two constructs
assessed by the two primarymodels are then no longer sufficiently separable and simply constitute
a different, unified type of model. Other modes of identification must be employed, even though
a general theorem and proof for the identification of these kinds of models might not be avail-
able. In any case, it is important that researchers report on any data-driven changes to their model
to avoid engaging in questionable research practices (Flake&Fried, 2020; Crede&Harms, 2019).

We only considered linear constraints on the cross-factor covariances, which make up the
overwhelming majority of restrictions on covariances in CFA models.3 Nevertheless, the cross-
model covariance matrix might be subject to a nonlinear transformation, such as, for example,
restricting a covariance to be strictly positive, setting a covariance to be equal some value unequal
to zero,4 or defining a covariance to be the square of another, just to name a few. However, an
extension of our theorem to the nonlinear case is straightforward, since the loading matrices of
the primary models act linearly on the (possibly nonlinearly transformed) cross-model covariance
matrix. Then, the properties of the nonlinear transformation will be determining the status of
identification.

Note that no linearity assumptions are made with respect to the constraints in the primary
models. The proof of Theorem S.3 relies on the fact that for identified, and therefore specific,
loading matrices �1 and �2, the matrix product �2�21�

T
1 is a linear map, regardless of how

the loading parameters of the primary models have been mapped into �1 and �2. Thus, we are

3So much so that many authors of papers discussing CFAmodels even implicitly limit themselves to only considering
restrictions in the form of setting some covariances to zero.

4Note that this restriction can be denoted affine linear, but it is not strictly linear in the algebraic sense that is used in
the assumptions of our theorem.
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confident that our theorem applies to the vast majority of composed CFA models encountered in
applied research.

Our theoremmayalso apply toCFAmodels that initially havenot been thought of as composed
CFA models, but for which the question of their identification is yet of high practical relevance.
One class of examples are multiconstruct LST models (Eid et al., 1994; Schermelleh-Engel et al.,
2004). The single-construct LST models they consist of can be considered the primary models,
and then, the status of identification for their composition—the multiconstruct LST model—can
be determined by our theorem. Even though identification for these types of models has already
been shown (Steyer, 1989), they are just one of many conceivable examples of models that are
covered by our theorem.

We showed that composed models consisting of reduced primary models must be identified.
Working with non-reduced models as primary models, however, can lead to identification issues
with the composed model if the loading matrices are rank-deficient as we have shown bymeans of
the introductory example. Note that this strictly follows from algebraic considerations and is not
related to the way latent variables are conceptualized. Moreover, it is important to emphasize that
non-reduced models, such as the classical bifactor model by Holzinger and Swineford (1939), can
still constitute an identified composed model, it just requires additional assumptions. Concretely,
researchers must decide if they want to free up parameters and find a suitable full-rank loading
structure for the primarymodels or if there are solid theoretical reasons for why some cross-model
covariances should be restricted and if these restrictions necessarily lead to an identified composed
model.

We already pointed out the issues of parsimony and empirical underidentification (which
we discuss in Supplementary Material) that arise in the former scenario. With this option, mea-
surement invariance assumptions are not testable if they lead to rank-deficiency in the loading
matrices of the primary models. As for the latter option, theoretical justification for the restriction
of cross-model covariances is given, for example, for interchangeable methods in the LST context
(Geiser et al., 2014). Conversely, for structurally different methods, this is not the case. For these
kinds of research scenarios, however, there is extensive literature recommending reduced models,
such as the CT-C(M − 1) model (Nussbeck et al., 2009; Eid et al., 2008).

It is worth noting that there are models that do not fall under the definition of reduced models
as given in the present article, but nevertheless share their favorable properties. Such an example is
the latent means model, which could also be used for analyzing designs with structurally different
methods (Pohl & Steyer, 2010; Koch et al., 2018). Like the CT-C(M − 1) model, it is based on
the idea of defining a reduced number of method (or specific) factors. In the latent means model,
the trait factor is not parameterized by reference items but as the overall mean of the true score
variables pertaining to all structurally different methods. Therefore, the latent means model is
not a reduced model. Nevertheless, its loading matrix has full rank under every loading structure,
and thus, measurement invariance assumption, as well. The latent means parameterization of our
running example is depicted in Fig. 6.

Irrespectively, our results cover a wide range of CFA models which cannot possibly be dis-
cussed individually and in full detail. Our theorem allows researchers to easily determine whether
a composed CFA model is identified by the necessary and sufficient conditions we provided in
this article. In fact, our theorem enables researchers to reduce the problem of identifying the
composed model to the problem of identifying the submodels and verifying the conditions stated
in Theorem 1. The obstacles for identifying the primary models are precisely those for identifying
any arbitrary CFA model: One either must find the specific class this model belongs to and use
identification results for this class or explicitly solve for the known parameters algebraically as
we discuss in the introduction section. The identification of the primary models hence leads back
to the general problem of identifying CFA models that can only be solved for classes of models
sharing a certain structure, but not in general.
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Figure 6.
A composed model with two latent means models as primary models. A latent means model with items X ji , general
factor GX , and specific factors SX1 and SX3, composed with another latent means model with items Y ji , general factor
GY , and specific factors SY1 and SY3, j ∈ {1, 2} and i ∈ {1, 2, 3}. All factors are correlated.

On the other hand, as the example of a model with two factors and two indicators per factor
with free loadings shows, unidentified primary models can be combined in a way that results in a
model that is identified because of its free cross-model factor covariances (Bollen, 1989). Then,
our theorem does not apply and further research is needed to determine in which cases this is
possible. However, we take it that, in applied research, models subject to composition are those
already employed in practice and extensively studied, such that identification conditions for the
primary models are readily available.

Lastly, for complicated primary models that are neither reduced nor equipped with trivially
full-rank loading matrices, identification of the composed model can be checked algorithmically.
The Python code we supply for the identification of the bifactor models discussed in this article
is easily generalized to more sophisticated models. There are no Python skills required beyond
defining variables and using the respective libraries’ methods.

We thus supply researchers with a powerful tool to determine their models’ status of iden-
tification and lay the mathematical groundwork for discussing a wide range of specific types of
composed models that commonly suffer from identification issues.
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