dc.contributor.author
Hurth, Tobias
dc.contributor.author
Khanin, Konstantin
dc.contributor.author
Navarro Lameda, Beatriz
dc.contributor.author
Nazarov, Fedor
dc.date.accessioned
2023-11-01T07:57:42Z
dc.date.available
2023-11-01T07:57:42Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/41382
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-41104
dc.description.abstract
We prove a factorization formula for the point-to-point partition function associated with a model of directed polymers on the space-time lattice Zd+1. The polymers are subject to a random potential induced by independent identically distributed random variables and we consider the regime of weak disorder, where polymers behave diffusively. We show that when writing the quotient of the point-to-point partition function and the transition probability for the underlying random walk as the product of two point-to-line partition functions plus an error term, then, for large time intervals [0, t], the error term is small uniformly over starting points x and endpoints y in the sub-ballistic regime x − y ≤ tσ, where σ < 1 can be arbitrarily close to 1. This extends a result of Sinai, who proved smallness of the error term in the diffusive regime x − y ≤ t1/2. We also derive asymptotics for spatial and temporal correlations of the field of limiting partition functions.
en
dc.format.extent
32 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Directed polymers
en
dc.subject
Random walk in a random environment
en
dc.subject
Weak disorder
en
dc.subject
Partition function
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
On a Factorization Formula for the Partition Function of Directed Polymers
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
165
dcterms.bibliographicCitation.doi
10.1007/s10955-023-03172-w
dcterms.bibliographicCitation.journaltitle
Journal of Statistical Physics
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.volume
190
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10955-023-03172-w
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1572-9613