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Abstract
We prove a factorization formula for the point-to-point partition function associated with a
model of directed polymers on the space-time lattice Z

d+1. The polymers are subject to a
random potential induced by independent identically distributed random variables and we
consider the regime of weak disorder, where polymers behave diffusively.We show that when
writing the quotient of the point-to-point partition function and the transition probability for
the underlying random walk as the product of two point-to-line partition functions plus an
error term, then, for large time intervals [0, t], the error term is small uniformly over starting
points x and endpoints y in the sub-ballistic regime ‖x − y‖ ≤ tσ , where σ < 1 can be
arbitrarily close to 1. This extends a result of Sinai, who proved smallness of the error term
in the diffusive regime ‖x − y‖ ≤ t1/2. We also derive asymptotics for spatial and temporal
correlations of the field of limiting partition functions.
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1 Introduction

The theory of directed polymers has been actively studied in the mathematical and phys-
ical literature in the last 30 years. From the point of view of probability theory and
statistical mechanics, directed polymers are random walks in a random potential. The prob-
ability distribution for a random path γ of length t is given by the Gibbs distribution
Pt

ω(γ ) = 1
Zt

ω
exp
[−βHt

ω(γ )
]
, where β is the inverse temperature, Ht

ω(γ ) is the total energy
of the interaction between the path γ and a fixed realization of the external random potential,
and the normalizing factor Zt

ω is the partition function. The random potential is a functional
defined on some probability space, and a point ω in this probability space completely char-
acterizes a fixed realization of the potential. In this paper we are interested only in the case
of non-stationary time-dependent random potentials. The simplest setting corresponds to the
discrete space-time lattice Z

d+1, where d is the spatial dimension. In this case the random
potential normally is assumed to be given by the i.i.d. field ω = {ξ(x, i) : x ∈ Z

d , i ∈ Z},
and Ht

ω = −∑t
i=0 ξ(γi , i). As usual one is interested in the asymptotic behavior of directed

polymers as t → ∞.
The first rigorous results for directed polymers were obtained by Imbrie and Spencer [1],

Bolthausen [2], and Sinai [3]. It was proved that in the case of weak disorder, namely when
d ≥ 3 and |β| is small, the polymer almost surely has diffusive behavior with a non-random
covariance matrix. It was later proved by Carmona and Hu [4], and Comets et al. [5] that in
the cases d = 1, 2, and d ≥ 3 with |β| large, the asymptotic behavior is very different. In
this regime, called strong disorder, the directed polymers are not spreading as t → ∞ but
remain concentrated in certain random places.

Sinai’s approach in [3] is based on the study of asymptotic properties of partition functions
Zt

ω as t → ∞. It turns out that if the polymer starts at a point x at time s, then in the limit
t → ∞ the properly normalized partition function converges almost surely to a random
variable Z∞

x,s . Here, in order to simplify notation, we are not indicating the dependence on ω.
In a similar way one can consider backward in time partition functions, and prove that after
the same normalization they also converge to limiting partition functions Z y,t

−∞, where (y, t)
is the endpoint of the polymer. The proof of the diffusive behavior follows from a factorization
formula proved by Sinai. Namely, a bridging partition function Z y,t

x,s corresponding to the
random-walk bridge between points (x, s), (y, t), t > s, satisfies the following asymptotic
relation:

Z y,t
x,s = qy−x

t−s (Z∞
x,s Z

y,t
−∞ + δ

y,t
x,s), (1)

where qy−x
t−s is the transition probability of the simple symmetric random walk, and a small

error term δ
y,t
x,s tends to zero as t − s → ∞, provided y − x belongs to the diffusive region:

‖y − x‖ = O(
√
t − s). Later, Sinai’s formula was extended by Kifer [6] to the continuous

setting.
The interest in the asymptotic behavior of directed polymers is largely motivated by the

connection between directed polymers and the theory of the stochastic heat equation

∂t Z(x, t) = 1

2
	Z(x, t) + ξω(x, t)Z(x, t)

and the random Hamilton-Jacobi equation

∂t
(x, t) + 1

2
|∇
(x, t)|2 = 1

2
	
(x, t) − ξω(x, t),
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which is related to the stochastic heat equation through the Hopf-Cole transformation

(x, t) = − ln Z(x, t). The connection between directed polymers and the stochastic heat
equation is a direct consequence of the Feynman-Kac formula, see, e.g., [7].

The main conjecture about the asymptotic behavior of the solutions to the random
Hamilton-Jacobi equation can be formulated in the following way. For a fixed value of
the average velocity b = 〈∇
(x, ·)〉, which is preserved by the equation, with probability
one there exists a unique (up to an additive constant) global solution. This means that solu-
tions starting from two different initial conditions 
1(x, 0) = b · x + �1(x, 0), 
2(x, 0) =
b · x +�2(x, 0) approach each other up to an additive constant as t → ∞, provided�1(x, 0)
and �2(x, 0) are functions of sublinear growth in ‖x‖ [7].

In terms of the stochastic heat equation, a similar uniqueness statement up to a mul-
tiplicative constant conjecturally holds for two initial conditions of the form Z1(x, 0) =
exp [−b · x − �1(x, 0)] and Z2(x, 0) = exp [−b · x − �2(x, 0)].

In order to be able to prove the above conjecture in the weak-disorder case, one has to
extend the factorization formula (1) to a much larger scale. This is the purpose of the present
article: We prove that the factorization formula holds for ‖x − y‖ < (t − s)σ , where σ can be
taken arbitrarily close to 1. Compared to [3], such an extension of the factorization formula
requires very different analytical methods.

In this paper we restrict ourselves to the simplest discrete case, i.e., polymers live on
the discrete space-time lattice Z

d+1 and the potential is induced by an i.i.d. field of random
variables. This allows us to make the exposition more transparent. However, in order to prove
the uniqueness conjecture for the stochastic heat equation in the weak-disorder regime, one
needs to consider the parabolic Anderson model, which is discrete in space and continuous
in time. The proof of the factorization formula in this semi-discrete setting, which is based
on similar ideas but technically more involved, will be published elsewhere. The proof of the
uniqueness conjecture itself will be published separately as well.

We conclude the introduction with several remarks:

1. The factorization formula can be extended to the full sub-ballistic regime ‖x − y‖ =
o(t − s). We are considering a smaller region ‖x − y‖ < (t − s)σ , which allows for
effective estimates of the smallness of the error term δ

y,t
x,s .

2. We believe that a similar factorization formula can be proved in the fully continuous case.
For this, one would need to assume that the correlations of the disorder field {ξ(x, t) :
x ∈ R

d , t ∈ R} are decaying sufficiently fast.
3. It is interesting to study the probability distribution for the limiting partition function

Z := Z∞
x,s and for
 = − ln Z . Although these probability distributions are not universal,

we believe that the tail distributions have many universal features. We conjecture that in
the case when the probability distribution of ξ has compact support, the left tail of the
density for 
 behaves like exp [−
1+d/2] and the right tail decays like exp [−
1+d ].
A related conjecture concerns the moments m(l) := 〈Zl〉 of Z , which we conjecture to
grow as exp [l1+2/d ] in the limit l → ∞. If the disorder ξ is Gaussian, then for any β > 0
only a finite number of moments for Z is finite. Thus, one can expect exponential decay
of the left tail for 
.

4. The uniqueness of global solutions to the stochastic heat equation and the random
Hamilton-Jacobi equation was also proved in dimension d = 1 [8–10]. The mecha-
nism leading to uniqueness in this case is completely different from our setting. We
should also mention that the case d = 1 corresponds to the famous KPZ universality
class.
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The rest of this paper is organized as follows: In Sect. 2 we derive an expansion for the
partition functions and convergence to limiting partition functions. This allows us to state our
main result, the factorization formula for Z y,t

x,s . We also derive asymptotics for both spatial
and temporal correlations of the field of limiting partition functions. In Sect. 3, we collect
several estimates on transition probabilities for the simple symmetric random walk on Z

d .
Sections 4 and 5 are devoted to the proof of the factorization formula. Finally, in the appendix
we prove the estimates on transition probabilities from Sect. 3.

Notation:Throughout this article the Euclidean norm and inner product inR
d are denoted

by ‖ · ‖ and · , respectively. The 1-norm in R
d is denoted by ‖ · ‖1. We simply write a ≡ b

to indicate that a ≡ b (mod 2). For functions A and B, potentially of several variables, we
write A � B or A is dominated by B to denote that A ≤ cB for some constant c > 0. The
constant c may depend on the dimension d , the inverse temperature β and the law of the
disorder (e.g., through λ defined in (6)), or on scaling parameters such as σ from Theorem 3
or ξ from Sect. 4.1. However, c is not allowed to depend on any time or space variables
such as t and z. The same remark applies to every constant introduced in this paper. Finally,
in order to simplify notation, we will write

∑
z to indicate that we are summing over all

z = (z1, . . . , zr ) ∈ (Zd)r , where the value of r will be clear from the context.

2 Setting andMain Result

Let γ = (γn)n∈Z be a discrete-time simple symmetric random walk on Z
d , d ≥ 3, starting at

point x ∈ Z
d at time s ∈ Z, with corresponding probability measure Px,s and corresponding

expectation Ex,s . As d ≥ 3, γ is transient. For integers t > s and y ∈ Z
d , we denote the

probability measure obtained from Px,s by conditioning on the event {γt = y} by Py,t
x,s . The

corresponding expectation is denoted by Ey,t
x,s . We also set

qzt : = P0,0(γt = z).

Let (ξ(x, t))x∈Zd ,t∈Z be a collection of i.i.d. random variables with corresponding probability
measure Q and corresponding expectation 〈 · 〉. These constitute the random potential in our
setting. We assume that

c(β) := 〈eβξ(0,0)〉 < ∞
for β > 0 sufficiently small. To a sample path of γ over a time interval [s, t], we assign the
random action

At
s = At

s(γ ): =
t∑

j=s

ξ(γ j , j).

For integers s < t , x, y ∈ Z
d , and inverse temperature β > 0, we define the random partition

functions

Z y,t
x,s : = c(β)−(t−s+1) qy−x

t−s Ey,t
x,se

βAt
s ,

Zt
x,s : =

∑

y∈Zd

Z y,t
x,s, and Z y,t

s : =
∑

x∈Zd

Z y,t
x,s .

Since c(β)−(t−s+1)〈eβAt
s 〉 = 1 for every realization of γ , we have 〈Zt

x,s〉 = 〈Z y,t
s 〉 = 1.

Notice that the law of the stochastic process (Zs+τ
x,s )τ∈N0 with respect to Q does not depend

on x or s. Besides, (Zs+τ
x,s )τ∈N0 and (Z y,t

t−τ )τ∈N0 have the same law.
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Remark 1 This is essentially the model considered by Sinai, where F(x, t) in [3] corre-
sponds to βξ(x, t) in our setting. Furthermore, the partition function Z y,n

x,k from [3] becomes

c(β)n−k+1Z y,n
x,k in our notation.

Given z ∈ Z
d and s ∈ Z, define

h(z, s): = eβξ(z,s) − c(β)

c(β)
.

As shown in the proof of Theorem 2 in [3], Z y,t
x,s can be written as

qy−x
t−s +

t−s+1∑

r=1

∑

s≤i1<···<ir≤t,
z1,...,zr∈Z

d

qz1−x
i1−s q

z2−z1
i2−i1

. . . qzr−zr−1
ir−ir−1

qy−zr
t−ir

r∏

j=1

h(z j , i j ). (2)

Similarly, one obtains the expansions

Z y,t
s = 1 +

t−s+1∑

r=1

∑

s≤i1<···<ir≤t,
z1,...,zr∈Z

d

qz2−z1
i2−i1

. . . qy−zr
t−ir

r∏

j=1

h(z j , i j ) (3)

and

Zt
x,s = 1 +

t−s+1∑

r=1

∑

s≤i1<···<ir≤t,
z1,...,zr∈Z

d

qz1−x
i1−s . . . qzr−zr−1

ir−ir−1

r∏

j=1

h(z j , i j ). (4)

2.1 Convergence to Limiting Partition Functions

As in [3], define

αd : =
∞∑

t=1

∑

z∈Zd

(
qzt
)2

. (5)

It is well known that qzt � t− d
2 (see, e.g., [11] or Lemma 7). Therefore, as d ≥ 3, there is a

constant C > 0 such that

αd ≤ C
∞∑

t=1

1

t
d
2

∑

z∈Zd

qzt = C
∞∑

t=1

1

t
d
2

< ∞.

We also define

λ: = c(β)−2c(2β) − 1. (6)

The following convergence statement for partition functions corresponds to Theorem 1 in
[3].

Theorem 1 For β so small that αdλ < 1, the following holds: As t → ∞, Z t
x,s converges in

L2(Q) to a limiting partition function Z∞
x,s .
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Remark 2 Due to symmetry, we also have that

Z y,t
−∞ := lim

s→−∞ Z y,t
s

exists in the sense of L2(Q) for all y ∈ Z
d and t ∈ Z.

Remark 3 As pointed out by Bolthausen [2], (Zt
x,s)t≥s is a martingale with respect to the

filtration Ft := σ(ξ(y, u) : s ≤ u ≤ t, y ∈ Z
d), so convergence to the limiting partition

functions also holds Q-almost surely by the Martingale Convergence Theorem.

Proof of Theorem 1 We follow the approach in [3]. The right-hand side of (4) has an orthog-
onality structure which we will exploit. Since h(z, s) and h(z′, s′) are independent if z �= z′
or if s �= s′, and since 〈h(z, s)〉 = 0, we have with Jensen’s Inequality and Fubini’s Theorem
that 〈(Zt

x,s)
2〉 is bounded from above by

2 + 2
∞∑

r=1

∑

s≤i1<···<ir ,
z1,...,zr∈Z

d

(
qz1−x
i1−s

)2
. . .
(
qzr−zr−1
ir−ir−1

)2 〈 r∏

j=1

h(z j , i j )
2
〉
. (7)

Since 〈h(z, s)2〉 = c(β)−2c(2β) − 1, we find

〈 r∏

j=1

h(z j , i j )
2
〉

=
r∏

j=1

(
c(β)−2c(2β) − 1

) = λr . (8)

Since αdλ < 1, one has
∑∞

r=1(αdλ)r < ∞, so the expression in (7) is finite. As a result,

sup
t>s

〈(
Zt
x,s

)2〉
< ∞,

which yields L2-convergence by the Martingale Convergence Theorem. ��
The following theorem gives a rate of convergence to the limiting partition function Z∞

x,s ,
which is needed to prove the factorization formula in Theorem 3.

Theorem 2 For β so small that αdλ < 1 and for θ ∈ (0,min{ d2 − 1,− ln(αdλ)}), one has

lim
t→∞(t − s)θ

〈(
Zt
x,s − Z∞

x,s

)2〉 = 0.

Proof For an integer t ≥ s, let

Mt : =
〈(
Zt
x,s − 1

)2〉 =
t−s+1∑

r=1

λr
∑

s≤i1<···<ir≤t,
z1,...,zr∈Z

d

(
qz1−x
i1−s

)2
. . .
(
qzr−zr−1
ir−ir−1

)2
,

which is monotone increasing in t . Set

M := lim
t→∞ Mt ∈ (0,+∞].

Then, for t > s,
〈(
Zt
x,s − Z∞

x,s

)2〉 = lim
T→∞

〈(
Zt
x,s − ZT

x,s

)2〉 ≤ 2(M − Mt ) (9)

123
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≤ 2
∑

1≤r≤ln(t−s)

λr
∑

s≤i1<···<ir ,ir>t,
z1,...,zr∈Z

d

(
qz1−x
i1−s

)2
. . .
(
qzr−zr−1
ir−ir−1

)2
(10)

+ 2
∑

r>ln(t−s)

λr
∑

s≤i1<···<ir ,
z1,...,zr∈Z

d

(
qz1−x
i1−s

)2
. . .
(
qzr−zr−1
ir−ir−1

)2
. (11)

The expression in (11) is dominated by
∑

r>ln(t−s)

(αdλ)r � (t − s)ln(αdλ),

and

lim
t→∞(t − s)θ (t − s)ln(αdλ) = 0, θ ∈ (0,− ln(αdλ)).

The expression in (10) is dominated by
∑

1≤r≤ln(t−s)

λr
∑

t1,...,tr∈N,
t1+···+tr>t−s

∑

x1,...,xr∈Zd

(
qx1t1
)2

. . .
(
qxrtr
)2

≤
∑

1≤r≤ln(t−s)

λr
r∑

l=1

∑

t1,...,tr∈N,

tl≥ t−s
ln(t−s)

r∏

k=1

( ∑

xk∈Zd

(
qxktk
)2
)

�
∞∑

r=1

r(αdλ)r
∑

j≥ t−s
ln(t−s)

1

j
d
2

�
∞∑

r=1

r(αdλ)r
(

t − s

ln(t − s)

)1− d
2

,

and

lim
t→∞(t − s)θ

(
t − s

ln(t − s)

)1− d
2 = 0, θ ∈ (0, d

2 − 1
)
.

��

2.2 Factorization Formula

The following factorization formula for the partition function Z y,t
x,s with fixed starting and

endpoint is the main result of this article.

Theorem 3 Let β be so small that αdλ < 1. For every σ ∈ (0, 1), no matter how close to 1,
there exists θ = θ(σ ) > 0 such that for all x, y ∈ Z

d and s < t with ‖x − y‖ < (t − s)σ ,
the partition function Z y,t

x,s has the representation

Z y,t
x,s = qy−x

t−s

(
Z∞
x,s Z

y,t
−∞ + δ

y,t
x,s

)
, (12)

where the error term δ
y,t
x,s defined by the formula above satisfies

lim
(t−s)→∞(t − s)θ sup

x,y∈Zd :‖x−y‖<(t−s)σ
〈|δy,tx,s |〉 = 0. (13)

123



165 Page 8 of 32 T. Hurth et al.

Theorem 3 is proved in Sect. 4. Notice that the formula is similar to the ones obtained by
Sinai in [3, Theorem 2] andKifer in [6, Theorem 6.1]. However, we show that the error term is
small not onlywithin the diffusive regime ‖x−y‖ < O(t−s)

1
2 , but also for ‖x−y‖ < (t−s)σ

with σ arbitrarily close to 1. This extension beyond the diffusive regime is nontrivial because
the error term in (12) is multiplied by the random-walk transition probability qy−x

t−s , which is

itself extremely small for ‖x−y‖ ≥ (t−s)
1
2 . In a forthcoming publication, we rely heavily on

a continuous-time version of Theorem 3 to prove a uniqueness statement for global solutions
to the semi-discrete stochastic heat equation.

2.3 Correlations for the Field of Limiting Partition Functions

As mentioned in Sect. 1, the distribution for the field of limiting partition functions
(Z∞

x,s)x∈Zd ,s∈Z is an interesting object to study, with several important questions still open.
Below, we state asymptotics for the spatial and temporal correlations of this field.

Theorem 4 Let β be so small that αdλ < 1. Then the spatial and temporal correlations for
the field of limiting partition functions (Z∞

x,s)x∈Zd ,s∈Z have the following asymptotics.

1. lim‖y‖→∞,
‖y‖1≡0

‖y‖d−2
(
〈Z∞

0,0Z
∞
y,0〉 − 〈Z∞

0,0〉〈Z∞
y,0〉
)

∈ (0,∞);

2. lim|s|→∞,
s≡0

|s| d2 −1 (〈Z∞
0,0Z

∞
0,s〉 − 〈Z∞

0,0〉〈Z∞
0,s〉
) ∈ (0,∞).

It is necessary to take the limit in part (1) along sequences (yn) such that ‖yn‖1 ≡ 0 for
all n, as Z∞

0,0 and Z∞
y,0 are independent if ‖y‖1 ≡ 1. A similar observation applies to the limit

in part (2). The proof of Theorem 4 relies on the following estimates for simple symmetric
random walk on Z

d , d ≥ 3.

Lemma 5 The following statements hold:

1. lim‖y‖→∞,
‖y‖1≡0

‖y‖d−2
∞∑

t=0

∑

x∈Zd

qxt q
y−x
t ∈ (0,∞);

2. lim
s→∞,
s≡0

s
d
2 −1

∞∑

t=0

∑

x∈Zd

qxt q
x
s+t ∈ (0,∞).

Proof For y ∈ Z
d whose 1-norm is even,

∞∑

t=0

∑

x∈Zd

qxt q
y−x
t =

∞∑

t=0

qy
2t = G(0, y),

where G denotes the Green’s function for simple symmetric random walk on Z
d . Theorem

4.3.1 in [11] implies that

lim‖y‖→∞,
‖y‖1≡0

‖y‖d−2G(0, y) ∈ (0,∞),

so (1) follows. To prove (2), first notice that for every even s ∈ N0,

∞∑

t=0

∑

x∈Zd

qxt q
x
s+t =

∞∑

t=0

q0s+2t =
∞∑

t=s/2

q02t .

123



On a Factorization Formula for the Partition … Page 9 of 32 165

It is well known (see, e.g., [12, Chapter 1]) that

lim
t→∞ t

d
2 q02t =: c ∈ (0,∞).

Let ε > 0. Then there exists T ∈ N such that

c − ε ≤ t
d
2 q02t ≤ c + ε, ∀t ≥ T .

Thus, for s even and ≥ 2T ,

∞∑

t=s/2

q02t ≤ (c + ε)

∞∑

t=s/2

t−
d
2 ≤ (c + ε)

2

d − 2

( s
2

− 1
)1− d

2

and

∞∑

t=s/2

q02t ≥ (c − ε)
2

d − 2

( s
2

)1− d
2

.

Hence,

lim sup
s→∞,
s≡0

s
d
2 −1

∞∑

t=s/2

q02t ≤ (c + ε)
2

d
2

d − 2
and lim inf

s→∞,
s≡0

s
d
2 −1

∞∑

t=s/2

q02t ≥ (c − ε)
2

d
2

d − 2
.

Since ε was arbitrarily chosen, we obtain (2). ��

Proof of Theorem 4 For y ∈ Z
d such that ‖y‖1 ≡ 0 and t ∈ N, the expansion in (4) along

with the properties of h(z, s) yield

〈Zt
0,0Z

t
y,0〉 = 1 +

t+1∑

r=1

λr
∑

0≤i1<···<ir≤t,
z1,...,zr∈Z

d

qz1i1 q
z1−y
i1

(
qz2−z1
i2−i1

)2
. . .
(
qzr−zr−1
ir−ir−1

)2
.

Along the lines of the proof of Theorem 2, one can easily show that, as t → ∞, the expression
on the right-hand side converges to

1 +
∞∑

r=1

λr
∑

0≤i1<···<ir ,
z1,...,zr∈Z

d

qz1i1 q
z1−y
i1

(
qz2−z1
i2−i1

)2
. . .
(
qzr−zr−1
ir−ir−1

)2
.

Therefore,

〈Z∞
0,0Z

∞
y,0〉 − 〈Z∞

0,0〉〈Z∞
y,0〉 =

∞∑

r=1

λr
∑

0≤i1<···<ir ,
z1,...,zr∈Z

d

qz1i1 q
z1−y
i1

(
qz2−z1
i2−i1

)2
. . .
(
qzr−zr−1
ir−ir−1

)2

=
∞∑

i=0

∑

x∈Zd

qxi q
x−y
i α−1

d

∞∑

r=1

(αdλ)r ,

and part (1 ) follows from Lemma 5. The proof of part (2) is similar and we omit it. ��

123



165 Page 10 of 32 T. Hurth et al.

3 Transition Probabilities for the Simple Symmetric RandomWalk

In this sectionwe collect several estimates on transition probabilities for the discrete-time sim-
ple symmetric random walk on Z

d , some of which are presumably well known to specialists.
Appendix A will be devoted to the proofs of the results presented here.

Let (γn)n∈N0 be a discrete-time simple symmetric random walk on Z
d starting at the

origin.

Lemma 6 There exist constants c1, c2 > 0 such that the following holds: For everyσ ∈ ( 34 , 1)
and σ̃ ∈ (σ, 1), there exists T ∈ N such that for every t ≥ T and y ∈ Z

d with q y
t > 0 and

‖y‖ ≤ tσ ,

q y
t ≥ c1

( d
2π t

) d
2 exp

(− d
2t ‖y‖2

)
exp
(

− c2t
4σ̃−3

)
. (14)

Lemma 7 There exists c1 > 0 such that for every y ∈ Z
d and for every linear functional ϕ

on R
d with |ϕ(x)| ≤ ‖x‖, x ∈ R

d , we have

q y
t e

ϕ(y) ≤ c1t
− d

2
∑

z∈Zd

qzt e
ϕ(z), ∀t ∈ N.

In particular,

q y
t � t−

d
2 .

Fix a linear functional ϕ on R
d such that |ϕ(x)| ≤ ‖x‖ for every x ∈ R

d . To simplify
notation, we set ϕ j : = ϕ(e j ) for 1 ≤ j ≤ d , where {e j } is the standard basis in R

d . Define
for every θ = (θ1, . . . , θd) ∈ R

d


(θ): = E
[
eiθ ·γ1eϕ(γ1)

]
= 1

2d

d∑

j=1

(
eiθ

j
eϕ j + e−iθ j

e−ϕ j
)

, (15)

where i is the imaginary unit. Notice that for every θ ∈ R
d ,

∣∣
(θ)
∣∣ ≤ 
(0) =

∑

z∈Zd

qz1e
ϕ(z), (16)

where 0 is the zero vector in R
d . Furthermore,


(0)t =
∑

y∈Zd

q y
t e

ϕ(y), ∀t ∈ N0. (17)

Notice also that 
 is 2π -periodic in every argument, so it will be convenient to work with
the cube C: = (−π

2 , 3π
2 ]d . It is not hard to see that the inequality (16) is strict for all θ ∈ C

except for θ0: = (0, . . . , 0) and θ1: = (π, . . . , π).

Lemma 8 There exist ρ1, ρ2 > 0 such that the following holds: For every t ∈ N and for
every z ∈ Z

d such that ‖z‖ ≤ ρ1t and qzt > 0, there exists a linear functional ϕ on R
d of

norm ‖ϕ‖ ≤ ρ2
‖z‖
t which satisfies

1

(2π)d

∫

C

∣∣
(θ)
∣∣t dθ ≤

(
1 + O(t−

2
5 )
)
qzt e

ϕ(z)
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and

qzt e
ϕ(z) � t−

d
2
∑

y∈Zd

q y
t e

ϕ(y).

Lemma 9 There exist constants ρ, c > 0 such that for every t, t ′ ∈ N and z, z′ ∈ Z
d with

‖z‖ ≤ ρt and qzt > 0, one has

qz
′

t ′
qzt

≤
(
1 + O(t−

2
5 )
)
exp

(
c

(‖z‖
t

(‖z − z′‖ + |t ′ − t |)+ ln(t)
|t − t ′|

t

))
.

4 Proof of Theorem 3

The main idea behind the factorization formula, which goes back at least to [3], is that there
is strong averaging for times neither too close to s nor too close to t .

Consider the representation of Z y,t
x,s in (2). For fixed r , i1, . . . , ir , and z1, . . . , zr , the

random walk is pinned to the points z1, . . . , zr at the corresponding times i1, . . . , ir . The
proof of Theorem 1 suggests that the contribution to Z y,t

x,s from r on the order of (t − s) is
negligible. If r is not on the order of (t − s), at least one of the gaps i j − i j−1 must be in some
sense large (see Sect. 4.1). In Sect. 4.2.2, we show that the contribution to Z y,t

x,s coming from
two or more large gaps is negligible as well. Thus, the main contribution comes from having
exactly one large gap i j − i j−1, which is then on the order of (t − s). In order for q

z j−z j−1
i j−i j−1

to be positive, z j−1 must be close to x and z j must be close to y. The transition probability

q
z j−z j−1
i j−i j−1

is then close to qy−x
t−s .

Notice that to prove Theorem 3, it is enough to show that if αdλ < 1, then for every
σ ∈ (0, 1) there exists θ > 0 such that

lim
t→∞ tθ sup

y∈Zd :‖y‖<tσ
〈|δy,t0,0|〉 = 0.

This is because for a fixed realizationω of the disorder, δy,tx,s(ω) can be written as δ
y−x,t−s
0,0 (ω̂),

where ω̂ is obtained by shiftingω in space and time.The distribution of the disorder is invariant
under such shifts.

For t ∈ N0 and r ∈ {1, . . . , t + 1}, let
I (t, r): = {i = (i1, . . . , ir ) ∈ N

r
0 : 0 ≤ i1 < · · · < ir ≤ t}.

For i ∈ I (t, r) and z = (z1, . . . , zr ) ∈ (Zd)r , define

qy
t (i, z): = qz1i1 q

z2−z1
i2−i1

. . . qy−zr
t−ir

.

With this notation, the expansion in (2) becomes

Z y,t
0,0 = qy

t +
t+1∑

r=1

∑

i∈I (t,r),z
qy
t (i, z)

r∏

j=1

h(z j , i j ), (18)

where one should recall from Sect. 1 the notational shorthand
∑

z for summation over all
z = (z1, . . . , zr ) ∈ (Zd)r . The first step is to split the double sum into terms according to
the size of the largest gap between indices, as discussed in Sect. 4.1.
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4.1 Large and Huge Gaps

If there exist σ ∈ (0, 1) and θ > 0 such that (13) (the convergence of the error term in the
factorization formula) holds, then (13) also holds for σ̃ and θ , where σ̃ can be any value in
(0, σ ). There is then no loss of generality in assuming that σ > 3/4, and one may even think
of σ as being very close to 1. For a collection of indices 0 = :i0 ≤ i1 < · · · < ir ≤ ir+1: = t ,
the gaps are the differences between consecutive indices, i.e., i1−i0, i2−i1, . . . , ir+1−ir . To
quantify what it means to have many gaps, we fix positive constants κ1, κ2 ∈ ( 12 (3σ − 1), σ )

such that κ1 < κ2. Let Tκ2 ∈ N be so large that 2(t − tκ2) > t for all t ≥ Tκ2 . Then define

k(t): =
{

(t − Tκ2)
κ1 − 1, (t − Tκ2)

κ1 − 1 ≥ 1,

0, (t − Tκ2)
κ1 − 1 < 1.

Note that k(t) grows with t like tκ1 . We say that a collection of indices 0 ≤ i1 < · · · < ir ≤ t
has many gaps if r > k(t).

To classify the size of a gap between indices, fix another constant ξ such that 0 < ξ <

min
{
1 − σ, κ2 − κ1}. One should think of ξ as being very close to 0. Note that ξ + κ1 < 1

and that ξ < κ1, the latter because of ξ < 1 − σ < 1/4 < 1
2 (

9
4 − 1) < κ1. Let t ∈ N such

that k(t) ≥ 1, r such that 1 ≤ r ≤ k(t), and consider a sequence of indices 0 = i0 ≤ i1 <

· · · < ir ≤ ir+1 = t . We say that the gap between two consecutive indices i j−1 and i j is

• large if i j − i j−1 ≥ tξ ;
• huge if i j − i j−1 ≥ t − r tξ .

Observe that the size of the largest gap is necessarily greater than t/(r + 1) ≥ t1−κ1 ≥ tξ ,
so there is at least one large gap. A huge gap is necessarily large. If there is only one large
gap, then all other gaps are of size less than tξ , so this large gap is even huge. Thus, if there
is no huge gap, there are at least two large ones. Since t must be greater than Tκ2 in order for
k(t) ≥ 1 to hold, we have 2(t − r tξ ) > 2(t − tκ1+ξ ) > 2(t − tκ2) > t, so there can be at
most one huge gap. Note, however, that a huge gap is not necessarily the only large one.

Let us introduce some more notation. Fix r ∈ N and t ∈ N0. For m ∈ N such that
1 ≤ m ≤ r + 1, define the following set of r -tuples:

I1(t, r ,m): = {(i1, . . . , ir ) ∈ I (t, r) : the gap between im−1 and im is huge} .

Also define

I2(t, r): = {(i1, . . . , ir ) ∈ I (t, r) : there is no huge gap} .

For t so large that k(t) ≥ 1, we decompose the expansion of Z y,t
0,0 in (18) as follows:

Z y,t
0,0 = qy

t +
3∑

j=1

By,t
j ,

where,

By,t
1 : =

∑

k(t)<r≤t+1

∑

i∈I (t,r),z
qy
t (i, z)

r∏

j=1

h(z j , i j ),

By,t
2 : =

∑

1≤r≤k(t)

∑

i∈I2(t,r),z
qy
t (i, z)

r∏

j=1

h(z j , i j ),
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By,t
3 : =

∑

1≤r≤k(t)

r+1∑

m=1

∑

i∈I1(t,r ,m),z

qy
t (i, z)

r∏

j=1

h(z j , i j ).

With this decomposition in hand, Theorem 3 follows immediately from the following lemma.

Lemma 10 (Central Lemma) Let β > 0 be so small that αdλ < 1, and let σ ∈ (0, 1).

1. For every θ > 0,

lim
t→∞ tθ sup

y:‖y‖≤tσ ,qy
t >0

〈|By,t
1 |〉
qy
t

= 0. (19)

2. There exists θ > 0 such that

lim
t→∞ tθ sup

y:‖y‖≤tσ ,qy
t >0

〈|By,t
2 |〉
qy
t

= 0. (20)

3. There exists θ > 0 such that

lim
t→∞ tθ sup

y:‖y‖≤tσ ,qy
t >0

〈∣∣
∣∣∣
1 + By,t

3

qy
t

− Z∞
0,0Z

y,t
−∞

∣
∣
∣∣∣

〉

= 0. (21)

Sections 4.2 and 4.3 are devoted to the proof of this lemma.

4.2 Proof of the Central Lemma, Parts 1 and 2: Small Contributions

In this section,we show that the contributions of the terms By,t
1 and By,t

2 to Z y,t
0,0 are negligible.

We start with the observation that, by Jensen’s inequality,
(

1

qy
t

〈∣∣By,t
j

∣∣
〉)2

≤ 1

(qy
t )2

〈(
By,t
j

)2〉
, j = 1, 2. (22)

4.2.1 Proof of Part 1: Many Gaps

Let t ∈ N be so large that k(t) ≥ 1. Since αdλ < 1, (8) and the definition (5) of αd let us
estimate 〈(By,t

1 )2〉 as follows:
〈(

By,t
1

)2〉 =
∑

k(t)<r≤t+1

λr
∑

i∈I (t,r),z
qy
t (i, z)2

�
∑

k(t)<r≤t+1

(αdλ)r ≤
∑

r>k(t)

(αdλ)r ≤ (αdλ)k(t)

1 − αdλ
.

Recall our assumption that σ > 3
4 . To estimate 1/(qy

t )2 on the right-hand side of (22), fix
σ̃ ∈ (σ, 1) such that 4σ̃ − 3 < 2σ − 1. By Lemma 6, there exist constants c1, c2 > 0
(independent of σ, σ̃ ) and T ∈ N (depending on σ, σ̃ ) such that for every integer t ≥ T and
y ∈ Z

d with qy
t > 0 and ‖y‖ ≤ tσ ,

qy
t ≥ c1

( d
2π t

)d/2
exp
(− d

2t ‖y‖2
)
exp
(
−c2t

4σ̃−3
)

� t−d/2 exp
(

− d
2 t

2σ−1 − c2t
4σ̃−3

)
≥ t−d/2 exp

(− ct2σ−1)
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for some constant c > 0. Therefore,

sup
y:‖y‖≤tσ ,qy

t >0

1

(qy
t )2

〈(
By,t
1

)2〉
� td (αdλ)k(t) exp

(
2ct2σ−1).

Since κ1 > 1
2 (3σ − 1) > 2σ − 1, we have t2σ−1/k(t) → 0 as t → ∞, and therefore, for all

θ > 0,

tθ sup
y:‖y‖≤tσ ,qy

t >0

1

(qy
t )2

〈(
By,t
1

)2〉
� tθ+d (αdλ)k(t) exp

(
2ct2σ−1) −−−→

t→∞ 0.

4.2.2 Proof of Part 2: No Huge Gaps

Let t ∈ N be so large that k(t) ≥ 1. Then
〈(

By,t
2

)2〉 =
∑

1≤r≤k(t)

λr
∑

i∈I2(t,r),z
qy
t (i, z)2 �

∑

1≤r≤k(t)

λr Mt,r (y), (23)

where

Mt,r (y): =
∑

i∈I2(t,r),z
i1 �=0,ir �=t

q y
t (i, z)2.

Now we estimate Mt,r (y). Let r ∈ N such that 1 ≤ r ≤ k(t), and y ∈ Z
d such that

‖y‖ ≤ tσ and qy
t > 0. Given i = (i1, . . . , ir ) ∈ I2(t, r) such that i1 �= 0 and ir �= t , set

t1: = i1, t2: = i2−i1, . . . , tr : = ir−ir−1, tr+1: = t−ir .Andgiven z = (z1, . . . , zr ) ∈ (Zd)r ,
set x1: = z1, x2: = z2 − z1, . . . , xr : = zr − zr−1, xr+1: = y − zr . This change of variables
yields

qy
t (i, z)2 = (qx1t1

)2
. . .
(
qxr+1
tr+1

)2
. (24)

For i ∈ I2(t, r), there is no huge gap and hence there are at least two large ones. Let

l: = ∣∣{1 ≤ j ≤ r + 1 : t j ≥ tξ
}∣∣− 1,

i.e., (l +1) gives the number of large gaps in i. There are (r +1) possible slots for the largest
gap (which is then also a large gap), and

(r
l

)
possible slots for the other l large gaps once the

largest gap has been fixed. Together with (24), this yields the estimate

Mt,r (y) ≤ (r + 1)
r∑

l=1

(
r

l

)
Mt,r ,l(y), (25)

where

Mt,r ,l(y) :=
∑

t1+···+tr+1=t
x1+···+xr+1=y
tr+1≥t1,...,tl≥tξ

tl+1,...,tr<tξ

(
qx1t1
)2

. . .
(
qxr+1
tr+1

)2
.

The sum on the right-hand side is taken over all t1, . . . , tr+1 ∈ N and x1, . . . , xr+1 ∈ Z
d that

satisfy the four conditions under the summation sign. In the special case l = r , the fourth
condition is void.
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For given positive integers tl+1, . . . , tr strictly less than tξ , set

t ′(tl+1, . . . , tr ) = t ′: = t − (tl+1 + · · · + tr );
and for xl+1, . . . , xr ∈ Z

d , set

x ′(xl+1, . . . , xr ) = x ′: = y − (xl+1 + · · · + xr ).

If l < r , this lets us write

Mt,r ,l(y) =
∑

tl+1,...,tr<tξ

(
qxl+1
tl+1

)2 · · · (qxrtr
)2
Mt ′

t,r ,l(x
′), (26)

where Mt ′
t,r ,l(x

′): =
∑

t1+···+tl+tr+1=t ′
x1+···+xl+xr+1=x ′
tr+1≥t1,...,tl≥tξ

(
qx1t1
)2 · · · (qxltl

)2(
qxr+1
tr+1

)2
. (27)

We now search for a bound for Mt ′
t,r ,l(x

′) when t is sufficiently large.

Claim 4.1 There exist constants C,C ′, T > 0 such that for every integer t ≥ T and for all
r , l, t ′, x ′ as above,

Mt ′
t,r ,l(x

′) � t−ξ/4 (qy
t )2 Cl t−ξ l(2d−5)/4 exp

(
C ′(r − l)tσ+ξ−1

)
,

and, in the special case l = r ,

Mt,r ,r (y) � t−ξ/4 (qy
t )2 Cr t−ξr(2d−5)/4.

We use Claim 4.1 to estimate Mt,r ,l(y) from (26) as follows:

Mt,r ,l(y) � αr−l
d t−ξ/4 (qy

t )2 Cl t−ξ l(2d−5)/4 exp
(
C ′(r − l)tσ+ξ−1

)

≤ t−ξ/4 (qy
t )2

(
C t−ξ(2d−5)/4

)l (
αd exp

(
C ′tσ+ξ−1)

)r−l
.

Then we combine the above estimate with (25) to obtain

Mt,r (y) � t−ξ/4(qy
t )2(r + 1)

r∑

l=1

(
r

l

)(
Ct−ξ(2d−5)/4

)l(
αd exp

(
C ′tσ+ξ−1)

)r−l

≤ t−ξ/4 (qy
t )2 (r + 1)

(
Ct−ξ(2d−5)/4 + αd exp

(
C ′tσ+ξ−1)

)r
.

Finally, combining this estimate with (22) and (23), we obtain

(
1

qy
t

〈∣∣∣By,t
2

∣∣∣
〉)2

� t−ξ/4
∞∑

r=1

(r + 1) λr
(
Ct−ξ(2d−5)/4 + αd exp

(
C ′tσ+ξ−1)

)r
.

Since d ≥ 3 and since ξ < 1 − σ , one has

lim
t→∞ tθ sup

y:‖y‖≤tσ ,qy
t >0

(
1

qy
t

〈∣∣∣By,t
2

∣∣∣
〉)2

= 0

as long as θ < ξ/4 and hence (20) for every θ < ξ/8. To complete the proof of Part 2, it
remains to prove Claim 4.1.
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Proof of Claim 4.1 By Lemma 8, there exist constants ρ1, ρ2 > 0 such that for every t ∈ N

and y ∈ Z
d with ‖y‖ ≤ ρ1t and qy

t > 0, there exists a linear functional ϕ on R
d of norm

‖ϕ‖ ≤ ρ2‖y‖/t which satisfies

qy
t e

ϕ(y) � t−d/2
∑

z∈Zd

qzt e
ϕ(z). (28)

Fix t ∈ N so large that k(t) ≥ 1 as well as tσ ≤ ρ1t and ρ2tσ−1 ≤ 1. Let y ∈ Z
d such

that ‖y‖ ≤ tσ and qy
t > 0. The conditions ρ2tσ−1 ≤ 1 and ‖y‖ ≤ tσ imply in particular

that ‖ϕ‖ ≤ 1 for the linear function ϕ corresponding to t and y. Let t1, . . . , tl , tr+1 ∈ N and
x1, . . . , xl , xr+1 ∈ Z

d such that the conditions under the summation sign in (27) hold. In the
special case l = r , replace t ′ and x ′ with t and y, respectively, here and in the remainder of
the proof. By Lemma 7, there exists a constant c1 > 0 such that

qx1t1 · · · qxltl qxr+1
tr+1

= eϕ(−x ′) ∏

j∈{1,...,l,r+1}
eϕ(x j )q

x j
t j

≤ eϕ(−x ′) ∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

∑

z∈Zd

qzt j e
ϕ(z)
)

= eϕ(−x ′) ∑

z∈Zd

qzt ′e
ϕ(z)

∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)

= eϕ(−x ′) 
(0)t
′ ∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)
,

where in the third line we used the fact that ϕ is a linear functional, and in the fourth line we
used (17), where 
 was defined in (15). Since t ′ < t and 
(0) ≥ 1, it follows from (28) that

(0)t

′ ≤ 
(0)t � td/2qy
t e

ϕ(y). As a result, for all positive integers t1, . . . , tl , tr+1 such that
t1 + · · · + tl + tr+1 = t ′ and tr+1 ≥ t1, . . . , tl ≥ tξ , one has

max
x1+···+xl+xr+1=x ′ q

x1
t1 · · · qxltl qxr+1

tr+1
� td/2 qy

t eϕ(y−x ′) ∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)
.

Furthermore, the sum
∑

qx1t1 · · · qxltl qxr+1
tr+1

over all tuples (x1, . . . , xl , xr+1) such that

x1 +· · · xl + xr+1 = x ′ equals qx ′
t ′ , and by Lemma 9 there exist constants c, ρ > 0 such that

qx
′

t ′ ≤ qy
t
(
1 + O(t−2/5)

)
exp

(
c

t

(
‖y‖‖y − x ′‖ + ‖y‖(t − t ′) + ln(t)(t − t ′)

))
,

for t so large that tσ ≤ ρt . Therefore,

∑

x1+···+xl+xr+1=x ′

(
qx1t1
)2 · · · (qxltl

)2(
qxr+1
tr+1

)2 � td/2 qy
t qx

′
t ′ e

ϕ(y−x ′) ∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)

� td/2 (qy
t )2 P(t)

∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)
,

where P(t): = exp

(
c′

t

(
2‖y‖‖y− x ′‖+‖y‖(t − t ′)+ ln(t)(t − t ′)

))
for a constant c′ > 0.

In the second line of the estimate above, we also used that ‖ϕ‖ ≤ ρ2‖y‖/t .
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Together with Lemma 14 from the appendix, we obtain the following estimate on
Mt ′

t,r ,l(x
′):

Mt ′
t,r ,l(x

′) � td/2 (qy
t )2 P(t)

∑

t1+···+tl+tr+1=t ′
tr+1≥t1,...,tl≥tξ

∏

j∈{1,...,l,r+1}

(
c1t

−d/2
j

)

� (qy
t )2 Cl t−ξ l(d−2)/2

(
t

t ′

)d/2

P(t),

≤ t−ξ/4 (qy
t )2 Cl t−ξ l(2d−5)/4

(
t

t ′

)d/2

P(t),

where C > 0 is a constant. It remains to bound (t/t ′)d/2P(t). We estimate the following
expressions involved in (t/t ′)d/2P(t) like so:

(
t

t ′

)d/2

≤ exp

(
d

2
ln(t)

t − t ′

t − 1

)
, t − t ′ =

r∑

j=l+1

t j ≤ (r − l)tξ ,

‖y − x ′‖ ≤
r∑

j=l+1

‖x j‖ ≤
r∑

j=l+1

t j ≤ (r − l)tξ ,

where
∑r

j=l+1 ‖x j‖ ≤∑r
j=l+1 t j is valid under the assumption that qx1t1 . . . qxr+1

tr+1
> 0. Then,

using ‖y‖ ≤ tσ , we obtain
(
t

t ′

)d/2

P(t) ≤ exp
(
C ′(r − l)tσ+ξ−1)

for some constant C ′ > 0. This completes the proof of Claim 4.1. ��

4.3 Proof of the Central Lemma, Part 3: TheMain Contribution

Let t be so large that k(t) ≥ 1 and let y ∈ Z
d such that ‖y‖ ≤ tσ and qy

t > 0. For
i ∈ I1(t, r ,m) and z ∈ (Zd)r , define

qy
t,m̂(i, z) := qz1i1 . . .

̂qzm−zm−1
im−im−1

. . . qy−zr
t−ir

, (29)

where the factor with the hat is absent; in other words, we set the transition probability
corresponding to the huge gap equal to 1.

Now decompose By,t
3 further, depending on the position of the huge gap 1) at the begining,

2) in the middle, or 3) at the end, as follows:

By,t
3 = qy

t

3∑

i=1

(
Fy,t
i + Ly,t

i

)
,

where

Fy,t
1 : =

∑

1≤r≤k(t)

∑

i∈I1(t,r ,1),z
qy

t,1̂
(i, z)

r∏

j=1

h(z j , i j ),

Fy,t
2 : =

∑

2≤r≤k(t)

r∑

m=2

∑

i∈I1(t,r ,m),z

qy
t,m̂(i, z)

r∏

j=1

h(z j , i j ),
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Fy,t
3 : =

∑

1≤r≤k(t)

∑

i∈I1(t,r ,r+1),z

qy

t ,̂r+1
(i, z)

r∏

j=1

h(z j , i j ); (30)

and the error terms are given by

Ly,t
1 : =

∑

1≤r≤k(t)

∑

i∈I1(t,r ,1),z

qz1i1 − qy
t

q y
t

q y

t,1̂
(i, z)

r∏

j=1

h(z j , i j ),

Ly,t
2 : =

∑

2≤r≤k(t)

r∑

m=2

∑

i∈I1(t,r ,m),z

qzm−zm−1
im−im−1

− qy
t

q y
t

q y
t,m̂(i, z)

r∏

j=1

h(z j , i j ),

Ly,t
3 : =

∑

1≤r≤k(t)

∑

i∈I1(t,r ,r+1),z

qy−zr
t−ir

− qy
t

q y
t

q y

t ,̂r+1
(i, z)

r∏

j=1

h(z j , i j ).

Notice that Fy,t
1 , Fy,t

2 , Fy,t
3 are well-defined even if qy

t = 0. We first show that the
contribution from each error term is negligible.

Lemma 11 There exists θ > 0 such that

lim
t→∞ tθ sup

y:‖y‖≤tσ ,qy
t >0

〈∣∣∣∣

3∑

i=1

Ly,t
i

∣∣∣∣

〉
= 0.

Proof It is enough to show that there exists θ > 0 such that for i ∈ {1, 2, 3},

lim
t→∞ tθ sup

y:‖y‖≤tσ ,qy
t >0

〈(
Ly,t
i

)2〉 = 0. (31)

For t so large that k(t) ≥ 1 and for y ∈ Z
d such that ‖y‖ ≤ tσ and qy

t > 0, one has
〈(

Ly,t
i

)2〉 =
∑

1≤r≤k(t)

λr ai (r)
∑

t∈�i
r ,x

(
qx1t1
)2

. . .
(
qxrtr
)2 (qy−x1−···−xr

t−t1−···−tr − qy
t )2

(qy
t )2

,

where ai (r): = 1 if i = 1, 3, a2(r): = (r − 1)1r≥2,

�i
r : =

{
t = (t1, . . . , tr ) ∈ N

r
0 : t1 ≥ 0, t2, . . . , tr > 0

t1 + · · · + tr ≤ r tξ
}

, i = 1, 3,

�2
r : =

{
t = (t1, . . . , tr ) ∈ N

r
0 : t1, tr ≥ 0, t2, . . . , tr−1 > 0

t1 + · · · + tr ≤ r tξ

}
,

and where the sum
∑

x is taken over all x = (x1, . . . , xr ) ∈ (Zd)r .
The convergence in (31) relies on qy−x1−···−xr

t−t1−···−tr being close to qy
t in the following sense:

Let ρ > 0 be the constant from Lemma 9, and assume that t is so large that tσ ≤ ρt . Let
1 ≤ r ≤ k(t), t1, tr ∈ N0, t2, . . . , tr−1 ∈ N with t1 + · · · + tr ≤ r tξ . Without loss of
generality, let x1, . . . , xr ∈ Z

d such that qx1t1 . . . qxrtr > 0, as otherwise the contribution to

〈(Ly,t
i )2〉 is zero.

Claim 4.2 There exists a constant c3 > 0 such that
(
qy−x1−···−xr
t−t1−···−tr − qy

t

q y
t

)2

≤
(
1 + O(t−

2
5 )
)
exp
(
c3r t

σ+ξ−1)− 1.
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Using this claim we can bound supy:‖y‖≤tσ ,qy
t >0〈(Ly,t

i )2〉 by
∞∑

r=1

λr r
∑

(t1,...,tr )∈Nr ,x

(
qx1t1
)2

. . .
(
qxrtr
)2 ((1 + O(t−

2
5 )
)
exp
(
c3r t

σ+ξ−1)− 1
)

�
∞∑

r=1

(αdλ)r r
((

1 + O(t−
2
5 )
)
exp
(
c3r t

σ+ξ−1)− 1
)

. (32)

Let θ ∈ (0,min{2/5, 1 − σ − ξ}). The definition of the Landau symbol O(t− 2
5 ) implies

that there exist constants C, T > 0 such that for every t > T ,

tθ
((

1 + O(t−
2
5 )
)
exp
(
c3r t

σ+ξ−1)− 1
)

≤ c3r t
σ+ξ−1+θ exp(c3r tσ+ξ−1) − 1

c3r tσ+ξ−1 + Ct−
2
5+θ exp

(
c3r t

σ+ξ−1)

≤ (c3r + C) exp
(
c3r t

σ+ξ−1) ,

where, in the third line, we used that (ex − 1)/x ≤ ex for every x > 0. Hence,

tθ
∞∑

r=1

∣∣∣∣(αdλ)r r
((

1 + O(t−
2
5 )
)
exp
(
c3r t

σ+ξ−1)− 1
)∣∣∣∣

≤
∞∑

r=1

(
αdλ exp

(
c3t

σ+ξ−1))r (c3r2 + Cr
)
.

For ϕ ∈ (αdλ, 1) and t so large that αdλ exp(c3tσ+ξ−1) ≤ ϕ, the series on the right is
dominated by the convergent series

∑
ϕr (c3r2 + Cr). Dominated convergence and (32)

then imply (31) for θ ∈ (0,max{2/5, 1 − σ − ξ}).
To complete the proof of Lemma 11, it remains to prove Claim 4.2.

Proof of Claim 4.2 Let x ′: = x1 + · · · + xr and t ′: = t1 + · · · + tr . Observe that q
y−x ′
t−t ′ > 0:

Indeed, notice first that t − t ′ ≥ t − k(t)tξ since t ′ ≤ r tξ . As k(t) is of order tκ1 and
κ1 + ξ < 1, the term t − t ′ is of order t . Moreover,

‖y − x ′‖ ≤ tσ +
r∑

j=1

‖x j‖ ≤ tσ +
r∑

j=1

t j ≤ tσ + k(t)tξ ,

which is of smaller order than t − t ′. Finally, t − t ′ and ‖y − x ′‖1 have the same parity
because qy

t > 0 and qx1t1 . . . qxrtr > 0.

Now, we derive an upper bound on |qy−x ′
t−t ′ − qy

t |/qy
t . If q

y−x ′
t−t ′ ≥ qy

t , then combining
Lemma 9 with the estimate ‖x ′‖ ≤ t ′ ≤ r tξ gives

|qy−x ′
t−t ′ − qy

t |
qy
t

≤
(
1 + O(t−

2
5 )
)
exp

(
c

(
2tσ−1r tξ + ln(t)

t
r tξ
))

− 1

≤
(
1 + O(t−

2
5 )
)
exp
(
c1r t

σ+ξ−1)− 1 (33)

for some constant c1 > 0. If qy
t > qy−x ′

t−t ′ , we argue as follows: Let t ∈ N be so large that
tσ + k(t)tξ ≤ ρ(t − t ′). Then

‖y − x ′‖ ≤ tσ + k(t)tξ ≤ ρ(t − t ′)
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and Lemma 9 with the estimate k(t)tξ � tκ1+ξ ≤ tσ (coming from ξ < κ2 − κ1 < σ − κ1)
yields

|qy−x ′
t−t ′ − qy

t |
qy
t

≤ qy
t

q y−x ′
t−t ′

− 1

≤
(
1 + O(t−

2
5 )
)
exp

(
c

(
tσ + k(t)tξ

t − t ′
2r tξ + ln(t − t ′) r tξ

t − t ′

))
− 1

≤
(
1 + O(t−

2
5 )
)
exp
(
c2r t

σ+ξ−1)− 1. (34)

Using that (a − 1)2 ≤ a2 − 1 for every a ≥ 1, in either case (33) or (34), we have the
following bound:

⎛

⎝
qy−x ′
t−t ′ − qy

t

q y
t

⎞

⎠

2

≤
(
1 + O

(
t−

2
5

))
exp
(
c3r t

σ+ξ−1)− 1,

where c3 > 0 is a constant. ��
In order to deal with the Fi ’s defined in (30), the strategy is to first define suitable

truncations of the partition functions. Fix ξ1, ξ2 satisfying

0 < ξ1 < ξ2 < ξ,

and notice that since ξ + σ < 1, we have ξ1 + σ < 1. Now set

T t
0,0 := 1 +

∑

1≤r≤tξ1+1

∑

i∈I (t,r),z
ir≤tξ2

qy

t ,̂r+1
(i, z)

r∏

j=1

h(z j , i j )

and

T y,t
0 := 1 +

∑

1≤r≤tξ1+1

∑

i∈I (t,r),z
t−tξ2≤i1

qy

t,1̂
(i, z)

r∏

j=1

h(z j , i j ),

where qy

t ,̂r+1
(i, z) and qy

t,1̂
(i, z) are defined according to (29), with qy

t ,̂r+1
(i, z) not depending

on y. Notice that T t
0,0 and T y,t

0 are truncations of the partition functions Zt
0,0 and Z y,t

0 ,
respectively (see (4) and (3)). The convergence statement in (21) will follow from the lemmas
below.

Lemma 12 There exists θ > 0 such that

lim
t→∞ tθ sup

‖y‖≤tσ

〈∣∣∣Fy,t
2 − (T t

0,0 − 1)(T y,t
0 − 1)

∣∣∣
〉
=0, (35)

lim
t→∞ tθ sup

‖y‖≤tσ

〈∣∣∣Fy,t
1 − (T y,t

0 − 1)
∣∣∣
〉
=0, (36)

lim
t→∞ tθ sup

‖y‖≤tσ

〈∣∣∣Fy,t
3 − (T t

0,0 − 1)
∣∣∣
〉
=0. (37)

Lemma 13 There exists θ > 0 such that

lim
t→∞ tθ sup

‖y‖≤tσ

〈∣∣∣T y,t
0 T t

0,0 − Z∞
0,0Z

y,t
−∞
∣∣∣
〉
=0. (38)
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The convergence statement in (35) is shown in Sect. 5.1. We show the convergence
statements in (36) and (37) in Sect. 5.2, and the one in (38) in Sect. 5.3.

5 Main Contribution: Proofs of Lemmas 12 and 13

5.1 Proof of Lemma 12, (35): Convergence for One Huge Gap in theMiddle

One has

(T t
0,0 − 1)(T y,t

0 − 1)

=
∑

1≤r≤tξ1+1

∑

1≤s≤tξ1+1

∑

0≤i1<···<ir≤tξ2 ,

z1,...,zr∈Z
d

∑

t−tξ2≤l1<···<ls≤t,
c1,...,cs∈Z

d

qz1i1 . . . qzr−zr−1
ir−ir−1

qc2−c1
l2−l1

. . . qy−cs
t−ls

r∏

j=1

h(z j , i j )
s∏

k=1

h(ck, lk). (39)

Define the set

V (t, r ,m): =
{
i = (i1, . . . , ir ) ∈ I1(t, r ,m) : 0 ≤ i1 < · · · < im−1 ≤ tξ2

t − tξ2 ≤ im < · · · < ir ≤ t

}

and its complement in I1(t, r ,m)

W (t, r ,m): = {i = (i1, . . . , ir ) ∈ I1(t, r ,m) : im−1 > tξ2 or im < t − tξ2
}
.

Recall the notation qy
t,m̂(i, z) from (29). Making the change of summation indices r : = r + s

and m: = r + 1 in (39), one has

(T t
0,0 − 1)(T y,t

0 − 1)

=
∑

2≤r≤tξ1+2

r∑

m=2

∑

i∈V (t,r ,m),z

qy
t,m̂(i, z)

r∏

j=1

h(z j , i j )

+
∑

tξ1+2<r ,
r≤2tξ1+2

∑

r−tξ1≤m,

m≤tξ1+2

∑

i∈V (t,r ,m),z

qy
t,m̂(i, z)

r∏

j=1

h(z j , i j ). (40)

The identity in (40) allows us to rewrite Fy,t
2 − (T t

0,0 − 1)(T y,t
0 − 1) as f y,t2;1 + f y,t2;2 + f y,t2;3 ,

where

f y,t2;1 : =
∑

r∈R1

r∑

m=2

∑

i∈W (t,r ,m),z

qy
t,m̂(i, z)

r∏

j=1

h(z j , i j ),

f y,t2;2 : =
∑

r∈R2

( r∑

m=2

∑

i∈I1(t,r ,m),z

qy
t,m̂(i, z)

r∏

j=1

h(z j , i j )

−
∑

r−tξ1≤m,

m≤tξ1+2

∑

i∈V (t,r ,m),z

qy
t,m̂(i, z)

r∏

j=1

h(z j , i j )

)
,
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f y,t2;3 : =
∑

r∈R3

r∑

m=2

∑

i∈I1(t,r ,m),z

qy
t,m̂(i, z)

r∏

j=1

h(z j , i j ),

R1: = {r ∈ N : 2 ≤ r ≤ tξ1 + 2}, R2: = {r ∈ N : tξ1 + 2 < r ≤ 2tξ1 + 2}, and
R3: = {r ∈ N : 2tξ1 + 2 < r ≤ k(t)}.

In order to prove (35), it is then enough to showexistence of θ > 0 such that for i = 1, 2, 3,

lim
t→∞ tθ sup

‖y‖≤tσ

〈(
f y,t2;i
)2〉 = 0. (41)

For i = 1, 3, one has

〈( f y,t2;i )2〉 =
∑

r∈Ri

λr
r∑

m=2

∑

i∈Hi (t,r ,m),z

qy
t,m̂(i, z)2, (42)

where H1(t, r ,m): = W (t, r ,m) and H3(t, r ,m): = I1(t, r ,m). Notice furthermore that
〈( f y,t2;2 )2〉 is bounded by (42) with i = 2 and H2(t, r ,m): = I1(t, r ,m). Now, we take up
cases i = 1, 2, 3 separately.
Case i = 1. Since for i ∈ W (t, r ,m),

i1 + (i2 − i1) + · · · + (im−1 − im−2) + (im+1 − im) + · · · + (t − ir )

=im−1 − im + t ≥ max{im−1; t − im} > tξ2 ,

the expression in (42) is dominated by

∑

r∈R1

rλr
∑

t1,...,tr∈N,x
t1+···+tr>tξ2

(
qx1t1
)2

. . .
(
qxrtr
)2 �

∞∑

r=1

r2(αdλ)r
∑

j> tξ2

tξ1+2

1

j
d
2

� t
(ξ2−ξ1)

(
1− d

2

)

.

This implies (41) for θ < (ξ2 − ξ1)(
d
2 − 1).

Case i = 2. The expression in (42) is dominated by
∑

r∈R2

rλr
∑

t1,...,tr∈N,x

(
qx1t1
)2

. . .
(
qxrtr
)2 ≤

∑

r>tξ1

r(αdλ)r .

From this estimate we deduce (41) for every θ > 0.
Case i = 3. The expression in (42) is dominated by

∑

r∈R3

r(αdλ)r ,

which converges to 0 as t → ∞ faster than any polynomial by the same argument as in the
case i = 2.

5.2 Proof of Lemma 12, (36) and (37): Convergence for One Huge Gap at the Start or
the End

We only show the convergence statement in (37) as the proof of (36) is analogous. Write

Fy,t
3 − T t

0,0 + 1 = f t3;1 + f t3;2,
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where for i = 1, 2,

f t3;i : =
∑

r∈Ri

∑

i∈Hi (t,r),z

qy

t ,̂r+1
(i, z)

r∏

j=1

h(z j , i j )

and R1: = {r ∈ N : 1 ≤ r ≤ tξ1 + 1}, R2: = {r ∈ N : tξ1 + 1 < r ≤ k(t)},
H1(t, r): =

{
i = (i1, . . . , ir ) : 0 ≤ i1 < · · · < ir ≤ r tξ

ir > tξ2

}
, H2

r : = I1(t, r , r + 1).

For i = 1, 2, one has
〈(

f t3;i
)2〉 =

∑

r∈Ri

λr
∑

i∈Hi (t,r),z

qy

t ,̂r+1
(i, z)2.

Convergence in the cases i = 1 and i = 2 works then as in the proof of (35).

5.3 Proof of Lemma 13: Convergence to Limiting Partition Functions

Let us first show that the truncated partition function T t
0,0 converges to the limiting partition

function Z∞
0,0 in the L

2 sense and obtain a rate of convergence.We will prove that there exists
θ > 0 such that

lim
t→∞ tθ

〈(
T t
0,0 − Zt

0,0

)2〉 = 0. (43)

One has

Zt
0,0 − T t

0,0 = Nt
1 + Nt

2,

where

Nt
1: =

∑

1≤r≤tξ1+1

∑

i∈I (t,r),z
ir>tξ2

qy

t ,̂r+1
(i, z)

r∏

j=1

h(z j , i j ),

Nt
2: =

∑

tξ1+1<r≤t+1

∑

i∈I (t,r),z
qy

t ,̂r+1
(i, z)

r∏

j=1

h(z j , i j ).

It is then enough to show existence of θ > 0 such that

lim
t→∞ tθ

〈(
Nt
i

)2〉 = 0, i ∈ {1, 2}. (44)

We have
〈(
Nt
2

)2〉 =
∑

tξ1+1<r≤t+1

λr
∑

i∈I (t,r),z
qy

t ,̂r+1
(i, z)2 �

∑

r>tξ1+1

(αdλ)r ,

so (44) holds for i = 2 and for every θ > 0. Moreover,
〈(
Nt
1

)2〉 =
∑

1≤r≤tξ1+1

λr
∑

i∈I (t,r),x
ir>tξ2

qy

t ,̂r+1
(i, z)2,

�
∑

1≤r≤tξ1+1

λr
∑

t1,...,tr∈N,x
t1+···+tr>tξ2

(
qx1t1
)2

. . .
(
qxrtr
)2

,

123



165 Page 24 of 32 T. Hurth et al.

so (44) holds for i = 1 and θ ∈ (0, (ξ2 − ξ1)(
d
2 − 1)). This implies (43). Combining (43)

with Theorem 2, one obtains in particular that there exists θ > 0 such that

lim
t→∞ tθ

〈(
T t
0,0 − Z∞

0,0

)2〉 = 0. (45)

To complete the proof of Lemma 13, notice that
〈∣∣
∣T t

0,0T
y,t
0 − Z∞

0,0Z
y,t
−∞
∣
∣
∣
〉
≤
〈∣∣
∣T y,t

0

(
T t
0,0 − Z∞

0,0

)∣∣
∣
〉
+
〈∣∣
∣Z∞

0,0

(
T y,t
0 − Z y,t

−∞
)∣∣
∣
〉
.

Therefore, we obtain the desired result by applying the Cauchy-Schwarz Inequality to the
two summands on the right-hand side, and using (45) together with

lim
t→∞

〈(
T t
0,0

)2〉 =
〈(
Z∞
0,0

)2〉
< ∞.
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Appendix A Proofs of Estimates for Transition Probabilities

A.1 Proof of Lemma 6

For t ∈ N0, set γ ∗
t : = γ2t . Then γ ∗ is a random walk on the lattice (Zd)ev consisting of

those points in Z
d whose coordinate sum is even. If {e j }1≤ j≤d is the standard basis for

R
d , then {e1 + e j : 1 ≤ j ≤ d} is a basis for (Zd)ev. Let L : R

d → R
d be the linear

transformation mapping e1 + e j to e j for 1 ≤ j ≤ d , and define γ̃t : = Lγ ∗
t . Then, γ̃ is an

aperiodic, irreducible, symmetric randomwalk onZ
d with bounded increments, so it satisfies
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the conditions of Theorem 2.3.11 in [11]. Thus, there exists ρ > 0 such that for every i ∈ N

and z ∈ Z
d satisfying ‖z‖ < ρi , we have

q̃ zi : = P(γ̃i = z) = 2

(
d

4π i

) d
2

exp

(
− d

4i
‖L−1z‖2

)
exp

(
O

(
1

i
+ ‖z‖4

i3

))
.

Now, fix σ ∈ ( 34 , 1), σ̃ ∈ (σ, 1), and let T ∈ N be so large that 1 + tσ < (t − 1)σ̃ and
t σ̃ <

ρ
2|||L||| t for every t ≥ T , where |||L||| is the operator norm of L . We distinguish between

two cases: t is either even or odd.
Even case. If t = 2m for some m ∈ N, then we can prove a slightly stronger statement:

Claim A.1 There exist constants c1, c2 > 0, independent of σ and σ̃ , such that (14) holds for
every even t ≥ T and y ∈ Z

d with q y
t > 0 and ‖y‖ ≤ t σ̃ .

The difference to the conclusion of Lemma 6 is that the estimate holds for ‖y‖ ≤ t σ̃ and
not just for ‖y‖ ≤ tσ . To prove this claim, fix t = 2m ≥ T and y ∈ Z

d such that qy
2m > 0

and ‖y‖ ≤ (2m)σ̃ . Then qy
2m = q̃ Ly

m . Since ‖Ly‖ ≤ |||L|||‖y‖ ≤ |||L|||t σ̃ < ρm, one has

q̃ Ly
m = 2

( d
2π t

) d
2 exp

(− d
2t ‖y‖2

)
exp

(
O

(
1

m
+ ‖Ly‖4

m3

))

≥ c1
( d
2π t

) d
2 exp

(− d
2t ‖y‖2

)
exp
(− c2t

4σ̃−3)

for some constants c1, c2 > 0.
Odd case.Now, suppose t = 2m+1 ≥ T for somem ∈ N. Fix y ∈ Z

d such that qy
2m+1 > 0

and ‖y‖ ≤ (2m + 1)σ . Let E be the set of standard unit vectors in R
d and their additive

inverses. Then

qy
2m+1 =

∑

z∈Zd

q y−z
2m qz1 = 1

2d

∑

z∈E
q y−z
2m .

Since ‖y − z‖ < 1 + tσ < (t − 1)σ̃ = (2m)σ̃ and qy−z
2m > 0 for every z ∈ E , then using

Claim A.1, we can bound qy
2m+1 from below as follows: There exist c′

1, c
′
2 > 0 such that

qy
2m+1 ≥ c′

1

2d

( d
4πm

) d
2 exp

(
− c′

2(2m)4σ̃−3
)∑

z∈E
exp
(− d

4m ‖y − z‖2)

≥ c′
1

2d

( d
2π t

) d
2 exp

(
− c′

2t
4σ̃−3

)
exp
(− d

4m ‖y − e1‖2
)
. (A1)

In addition to t ≥ T , assume that t is so large that

exp

(
−d

2

(
t2σ

t(t − 1)
+ 1 + 2tσ

t − 1

))
>

1

2
.

Since ‖y − e1‖2 = ‖y‖2 + 1 − 2y · e1 ≤ ‖y‖2 + 1 + 2‖y‖, it follows that
exp
(− d

4m ‖y − e1‖2
) ≥ exp

(
− d

4m

(‖y‖2 + 1 + 2‖y‖)
)

≥ exp
(

− d
2t ‖y‖2

)
exp
(

− d
2

(
t2σ

t(t−1) + 1+2tσ
t−1

))

> 1
2 exp

(
− d

2t ‖y‖2
)
.

Plugging this into the right-hand side of (A1), we obtain the desired estimate.

123



165 Page 26 of 32 T. Hurth et al.

A.2 Proof of Lemma 7

Recall from Sect. 3 that θ0 = (0, . . . , 0) and θ1 = (π, . . . , π). For ε > 0 and j ∈ {0, 1},
let Dε

j : = {θ ∈ R
d : ‖θ − θ j‖ < ε}. Let ϕ be a linear functional on R

d such that

|ϕ(x)| ≤ ‖x‖, x ∈ R
d , and let 
 be the corresponding function defined in (15).

Claim A.2 There exist ε, δ > 0 such that, for j ∈ {0, 1},
∣
∣
∣
∣


(θ)


(θ j )

∣
∣
∣
∣ ≤ e−δ‖θ−θ j‖2 for every θ ∈ C \ Dε

1− j .

Proof of Claim A.2 For j ∈ {0, 1}, define scaled versions of the gradient vector and theHessian
matrix of 
 at θ j :

G j : = −i
∇
(θ j )


(θ j )
and Hj : = −1

2

∇2
(θ j )


(θ j )
.

A simple computation shows that the matrix Hj is diagonal, and that for every l ∈ {1, . . . , d},
the l-th component of G j and the (l, l)-entry of Hj are, respectively,

Gl
j = sinh(ϕl)

d
(0)
and Hl

j = cosh(ϕl)

2d
(0)
. (A2)

If we Taylor expand 
 around θ j , we obtain
∣∣∣∣


(θ)


(θ j )

∣∣∣∣ =
∣∣∣1 + iG j · (θ − θ j ) − (θ − θ j ) · Hj (θ − θ j ) + O

(‖θ − θ j‖3)
∣∣∣

=
(
1 − 2(θ − θ j ) · Hj (θ − θ j ) + (G j · (θ − θ j ))2 + O

(‖θ − θ j‖3)
)1/2

.

Here and in the sequel, g(θ) = O( f (θ))means there exists a constant c > 0, independent
of ϕ, such that |g(θ)| ≤ c f (θ). In the Taylor expansion above, the constant c corresponding
to the error term O

(‖θ −θ j‖3)may be chosen independently of ϕ because of the assumption
that ‖ϕ‖ ≤ 1. Notice from (A2) that G0 = G1 and H0 = H1, so in order to prove Claim A.2,
it is enough to consider the case j = 0, where θ j = (0, . . . , 0). If we write θ = (θ1, . . . , θd),
then, using Jensen’s Inequality for sums,

(
G0 · θ

)2 ≤ 1

d
(0)

d∑

l=1

sinh(|ϕl |) θ2l .

Using the expression for H0 in (A2) as well as ‖ϕ‖ ≤ 1, we obtain

2θ · H0θ − (G0 · θ
)2 ≥ 1

d
(0)

d∑

l=1

e−|ϕl |θ2l ≥ 1

de
(0)
‖θ‖2.

Thus, there exist ε > 0 and a constant c > 0 such that for every θ with ‖θ‖ ≤ ε,
∣∣∣∣

(θ)


(0)

∣∣∣∣ ≤
(
1 − 1

de
(0)
‖θ‖2 + O

(‖θ‖3)
)1/2

≤ (1 − c‖θ‖2)1/2.

Since the map θ �→ ∣∣
(θ)/
(0)
∣∣ is continuous and strictly less than 1 for every θ ∈ C except

θ0, θ1, it follows that

(ϕ): = sup
{∣∣
(θ)/
(0)

∣∣ : θ ∈ C; ‖θ‖, ‖θ − θ1‖ ≥ ε
}

< 1.
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In fact, one even has sup‖ϕ‖≤1 (ϕ) < 1. Hence, if we choose c̃ ∈ (0, c) so small that(
1 − c̃‖θ‖2) ≥ (sup‖ϕ‖≤1 (ϕ))2 for every θ ∈ C, then Claim A.2 follows with δ: = c̃/2.

For t ∈ N, let 
̂t be the Fourier transform of 
t ; i.e.,


̂t (z): = 1

(2π)d

∫

C

(θ)t e−iθ ·z dθ, z ∈ Z

d .

Since 
(θ)t = E
[
eiθ ·γt eϕ(γt )

]
, one has


̂t (z) =
∑

y∈Zd

P(γt = y)eϕ(y) 1

(2π)d

∫

C
eiθ ·(y−z) dθ = qzt e

ϕ(z). (A3)

Now, we estimate with the help of (17) and Claim A.2:

qzt e
ϕ(z) ≤ 1

(2π)d

∫

C

∣
∣
(θ)

∣
∣t dθ = 1

(2π)d

∫

C

∣
∣
∣
∣

(θ)


(0)

∣
∣
∣
∣

t

dθ
∑

y∈Zd

q y
t e

ϕ(y)

≤ 1

(2π)d

(∫

C\Dε
1

e−δt‖θ‖2 dθ +
∫

C\Dε
0

e−δt‖θ−θ1‖2 dθ

)
∑

y∈Zd

q y
t e

ϕ(y)

≤ 2

(2π)d

∫

Rd
e−δt‖θ‖2 dθ

∑

y∈Zd

q y
t e

ϕ(y).

Finally, for some constant C > 0,
∫

Rd
e−δt‖θ‖2 dθ ≤ C

∫ ∞

0
rd−1e−δtr2 dr = Ct−

d
2

∫ ∞

0
ρd−1e−δρ2

dρ.

A.3 Proof of Lemma 8

For j ∈ {0, 1}, let B j : = {θ ∈ C : ‖θ − θ j‖ ≤ t−2/5}. Recall from (A3) that for every
z ∈ Z

d , t ∈ N, and for every linear functional ϕ on R
d satisfying ‖ϕ‖ ≤ 1, one has

qzt e
ϕ(z) = 1

(2π)d

∫

C

(θ)t e−iθ ·z dθ = I0 + I1 + I ,

where

I j : = 1

(2π)d

∫

B j


(θ)t e−iθ ·z dθ and I : = 1

(2π)d

∫

C\(B0∪B1)


(θ)t e−iθ ·z dθ.

Then we find

1

(2π)d

∫

C

∣∣
(θ)
∣∣t dθ − qzt e

ϕ(z) ≤
∑

j∈{0,1}

(
1

(2π)d

∫

B j

∣∣
(θ)
∣∣t dθ − Re(I j )

)

+ 2

(2π)d

∫

C\(B0∪B1)

∣∣
(θ)
∣∣t dθ. (A4)

We now estimate the expression on the right-hand side. First, we show that the linear
functional ϕ can be chosen in such a way that for j ∈ {0, 1},

1

(2π)d

∫

B j

∣∣
(θ)
∣∣t dθ − Re(I j ) = O(t−2/5)

∫

C

∣∣
(θ)
∣∣t dθ. (A5)
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The idea is to choose ϕ as a function of z and t in such a way that the linear term in the Taylor
expansion of 
(θ)e−i z·θ/t around θ j vanishes, i.e.,


(θ j )∇
(
e−i z·θ j /t

)
+ e−i z·θ j /t∇
(θ j ) = 0.

If we denote the kth component of z by zk , this is equivalent to

zk
t

= sinh(ϕk)

d
(0)
= sinh(ϕk)
∑d

l=1 cosh(ϕl)
, 1 ≤ k ≤ d,

by virtue of (A2). Let F : R
d → R

d be given by

F(x1, . . . , xd): =
d∑

k=1

sinh(xk)
∑d

l=1 cosh(xl)
ek .

For r > 0 and x ∈ R
d , let Br (x) denote the open Euclidean ball of radius r centered at x .

Since F(0) = 0 and

det DF(0) = 1

dd
�= 0,

the Inverse Function Theorem yields existence of ρ1 > 0 and an open neighborhood U of
0 such that F : U → Bρ1(0) is a diffeomorphism. Therefore, for every t ∈ N and z ∈ Z

d

with ‖z‖ < ρ1t , there exists ϕ ∈ U such that F(ϕ) = z/t . Since F−1 is differentiable and
F−1(0) = 0, there exists ρ2 > 0 such that

‖ϕ‖ = ‖F−1(z/t)‖ ≤ ρ2
‖z‖
t

.

Without loss of generality, we may assume that ρ1ρ2 ≤ 1 so that ‖ϕ‖ ≤ 1.
Fix t ∈ N, z ∈ Z

d such that ‖z‖ ≤ ρ1t and qzt > 0, and the corresponding ϕ ∈ R
d such

that F(ϕ) = z/t . We identify ϕ with the linear functional mapping ek to ϕk for 1 ≤ k ≤ d .
For this choice of ϕ, the linear term in the Taylor expansion of 
(θ)e−i z·θ/t vanishes, so we

have for j ∈ {0, 1} and θ ∈ B j (‖θ − θ j‖ ≤ t− 2
5 )


(θ)e−i z·θ/t = 
(θ j )e−i z·θ j /t + (θ − θ j ) · A j (θ − θ j ) + O
(‖θ − θ j‖3)

= 
(θ j )e−i z·θ j /t

(

1 + (θ − θ j ) · A j (θ − θ j )


(θ j )e−i z·θ j /t
+ O(t−6/5)

)

, (A6)

where A j is the quadratic form in the Taylor expansion of 
(θ)e−i z·θ/t . The error term

O(t−6/5) is complex-valued, whereas the entries of A j
/

(θ j )e−i z·θ j /t are real numbers.

Let x j (θ) and y j (θ) denote respectively the real and imaginary part of

1 + (θ − θ j ) · A j (θ − θ j )


(θ j )e−i z·θ j /t
+ O(t−6/5).

Then the left-hand side of (A5) can be written as follows:


(0)t

(2π)d

∫

B j

(∣∣x j (θ) + iy j (θ)
∣∣t − Re

((
x j (θ) + iy j (θ)

)t)
)
dθ. (A7)

Here, in the case j = 1, we used the assumption that qzt > 0 and hence t and ‖z‖1 have
the same parity: as t ≡ ‖z‖1, one has 
(θ1)t e−i z·θ1 = 
(0)t (−1)t e−iπ‖z‖1 = 
(0)t . If we
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represent x j (θ) + iy j (θ) in polar form, then the modulus is
∣
∣
(θ)/
(0)

∣
∣ and the argument

is of order O(t−6/5). As a result, the integrand in (A7) can be written as
∣
∣
(θ)

∣
∣t


(0)t

(
1 − cos

(
O(t−1/5)

)) =
∣
∣
(θ)

∣
∣t


(0)t
O(t−2/5),

which yields (A5).
We continue estimating the expression on the right-hand side of (A4) by showing that for

F(ϕ) = z/t , one also has

2

(2π)d

∫

C\(B0∪B1)

∣
∣
(θ)

∣
∣t dθ � t−2/5

∫

C

∣
∣
(θ)

∣
∣t dθ. (A8)

By Claim A.2, there exist ε, δ > 0 such that the left-hand side of (A8) is dominated by

2
(0)t

(2π)d

(∫

C\(B0∪Dε
1)

e−δt‖θ‖2dθ +
∫

C\(B1∪Dε
0)

e−δt‖θ−θ1‖2dθ

)

� 
(0)t e−δt1/5.

Here we used that

C \ (B0 ∪ B1) ⊆ C \ [(B0 ∩ Dε
0) ∪ (B1 ∩ Dε

1)
] ⊆ [C \ (B0 ∪ Dε

1)
] ∪ [C \ (B1 ∪ Dε

0)
]
.

As e−δt1/5 � t−2/5t−d/2, the estimate in (A8) follows once we show that

Jt : =
∫

C

( |
(θ)|

(0)

)t

dθ � t−d/2. (A9)

We have

Jt ≥ 1


(0)t

∫

B0

∣∣
(θ)e−i z·θ/t
∣∣t dθ =

∫

B0

∣∣x0(θ) + iy0(θ)
∣∣t dθ

≥ cos
(
O(t−1/5)

) ∫

B0

∣∣x0(θ)
∣∣t dθ = (1 + O(t−2/5)

) ∫

B0

∣∣x0(θ)
∣∣t dθ,

where we used (A6). For θ ∈ B0, one has x0(θ) = exp
(
(θ · A0θ)/
(0)

)(
1+ O(t−6/5)

)
, so

we can continue the above chain of inequalities as follows:

Jt ≥ (1 + O(t−2/5)
)(
1 + O(t−6/5)

)t
∫

B0

exp

(
t
θ · A0θ


(0)

)
dθ

�
∫

B0

exp

(
t
θ · A0θ


(0)

)
dθ �

∫

B0

e−ct‖θ‖2 dθ � t−d/2,

where c > 0 is some constant. Combining (A4), (A5), and (A8) yields

qzt e
ϕ(z) ≥

(
1 + O(t−2/5)

) 1

(2π)d

∫

C

∣∣
(θ)
∣∣t dθ (A10)

and hence

1

(2π)d

∫

C

∣∣
(θ)
∣∣t dθ ≤

(
1 + O(t−2/5)

)
qzt e

ϕ(z).

To show that

qzt e
ϕ(z) � t−

d
2
∑

y∈Zd

q y
t e

ϕ(y),

one simply combines (A10) with (A9) and (17).
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A.4 Proof of Lemma 9

Let ρ: = ρ1 and ρ2 be as in Lemma 8, and let t, t ′ ∈ N, z, z′ ∈ Z
d such that ‖z‖ ≤ ρt and

qzt > 0. Let ϕ be the linear functional from Lemma 8 that corresponds to t and z, and for
which ‖ϕ‖ ≤ ρ2‖z‖/t and

1

(2π)d

∫

C
|
(θ)|t dθ ≤

(
1 + O(t−

2
5 )
)
qzt e

ϕ(z). (A11)

We consider two cases: t ′ > t and t ′ ≤ t .
Case “t ′ > t”. By (A3) and (16), one has

qz
′

t ′ e
ϕ(z′) ≤ 1

(2π)d

∫

C
|
(θ)|t ′ dθ ≤ 
(0)t

′−t 1

(2π)d

∫

C
|
(θ)|t dθ.

Furthermore,


(0)t
′−t ≤ e‖ϕ‖(t ′−t) ≤ eρ2‖z‖(t ′−t)/t .

The estimate in (A11) then implies

qz
′

t ′
qzt

≤
(
1 + O

(
t−

2
5

))
eϕ(z−z′)eρ2‖z‖(t ′−t)/t

≤
(
1 + O

(
t−

2
5

))
exp

(
ρ2

‖z‖
t

(‖z − z′‖ + |t ′ − t |)
)

.

Case “t ′ ≤ t”. If t ′ ≤ t , the function x �→ xt/t
′
is convex, and Jensen’s Inequality implies

qz
′

t ′ e
ϕ(z′) ≤

(
1

(2π)d

∫

C
|
(θ)|t dθ

)t ′/t
= 
(0)t

′
J t

′/t
t ≤ 
(0)t J t

′/t
t , (A12)

where Jt was defined in (A9). Since Jt � t−d/2,

J t
′/t

t ≤
(
c2t

d
2

)(t−t ′)/t
Jt ≤ exp

(
c3 ln(t)

t − t ′

t

)
Jt (A13)

for some constants c2, c3 > 0. Combining (A12) and (A13), we obtain

qz
′

t ′ ≤ e−ϕ(z′) 1

(2π)d

∫

C
|
(θ)|t dθ exp

(
c3 ln(t)

t − t ′

t

)
.

Together with (A11), this yields

qz
′

t ′
qzt

≤
(
1 + O(t−

2
5 )
)
exp

(
ϕ(z − z′) + c3 ln(t)

t − t ′

t

)

≤
(
1 + O(t−

2
5 )
)
exp

(
c

(‖z‖
t

‖z − z′‖ + ln(t)
t − t ′

t

))

for some constant c > 0.
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Appendix B A Calculus Estimate

Lemma 14 There exists c > 0 such that for every t ∈ N, l ∈ N0, and M > 0,

∑

t1+···+tl+1=t,
t1,...,tl+1≥M

l+1∏

j=1

t
− d

2
j ≤ cl

M
l
(
d
2 −1

) t−
d
2 . (B14)

The sum on the left-hand side is taken over all positive integers t1, . . . , tl+1 that satisfy the
two conditions under the summation sign.

Proof We choose

c: = 2d max
{
ζ
( d
2

)
,
( d
2 − 1

)−1
}

,

where ζ is the Riemann Zeta Function, and prove the statement by induction. In the base
case l = 0, the left-hand side of (B14) is either zero (if t < M), or becomes

t−
d
2 = c0

M0 t
− d

2 .

In the induction step, suppose that (B14) holds for some l ∈ N0. Then,

∑

t1+···+tl+2=t,
t1,...,tl+2≥M

l+2∏

j=1

t
− d

2
j =

∑

t ′+tl+2=t,
t ′,tl+2≥M

( ∑

t1+···+tl+1=t ′,
t1,...,tl+1≥M

l+1∏

j=1

t
− d

2
j

)
t
− d

2
l+2 . (B15)

For every t ′,

∑

t1+···+tl+1=t ′,
t1,...,tl+1≥M

l+1∏

j=1

t
− d

2
j ≤ cl

M
l
(
d
2 −1

) (t ′)−
d
2

by induction hypothesis. Hence, the right-hand side of (B15) is bounded from above by

cl

M
l
(
d
2 −1

)
∑

t ′+tl+2=t,
t ′,tl+2≥M

(t ′)−
d
2 t

− d
2

l+2 . (B16)

We have
∑

t ′+tl+2=t,
t ′,tl+2≥M

(t ′)−
d
2 t

− d
2

l+2 ≤ 2
∑

t ′+tl+2=t,
t ′≥tl+2≥M

(t ′)−
d
2 t

− d
2

l+2 .

If t ′ + tl+2 = t and t ′ ≥ tl+2, it follows that t ′ ≥ t
2 , so the expression on the right-hand side

is bounded from above by

2
d
2 +1t−

d
2
∑

tl+2≥M

t
− d

2
l+2 . (B17)

If M ≥ 2, we have

∑

tl+2≥M

t
− d

2
l+2 ≤

∫ ∞
M
2

x− d
2 dx = 2

d
2 −1

d
2 − 1

M1− d
2 .
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If M < 2,
∑

tl+2≥M

t
− d

2
l+2 ≤ ζ( d2 ) < ζ( d2 )2

d
2 −1M1− d

2 .

The expression in (B17) is therefore less than cM1− d
2 t− d

2 . Combining this estimate
with (B16) yields

∑

t1+···+tl+2=t,
t1,...,tl+2≥M

l+2∏

j=1

t
− d

2
j ≤ cl+1

M (l+1)( d2 −1)
t−

d
2 .

��
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