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Abstract

We prove a factorization formula for the point-to-point partition function associated with a
model of directed polymers on the space-time lattice Z9*!. The polymers are subject to a
random potential induced by independent identically distributed random variables and we
consider the regime of weak disorder, where polymers behave diffusively. We show that when
writing the quotient of the point-to-point partition function and the transition probability for
the underlying random walk as the product of two point-to-line partition functions plus an
error term, then, for large time intervals [0, 7], the error term is small uniformly over starting
points x and endpoints y in the sub-ballistic regime ||x — y|| < #°, where ¢ < 1 can be
arbitrarily close to 1. This extends a result of Sinai, who proved smallness of the error term
in the diffusive regime ||lx — y| < ¢'/2. We also derive asymptotics for spatial and temporal
correlations of the field of limiting partition functions.
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1 Introduction

The theory of directed polymers has been actively studied in the mathematical and phys-
ical literature in the last 30 years. From the point of view of probability theory and
statistical mechanics, directed polymers are random walks in a random potential. The prob-
ability distribution for a random path y of length ¢ is given by the Gibbs distribution
Pl(y) = % exp [—BH!(y)], where g is the inverse temperature, H/,(y) is the total energy
of the interaction between the path y and a fixed realization of the external random potential,
and the normalizing factor Z! is the partition function. The random potential is a functional
defined on some probability space, and a point w in this probability space completely char-
acterizes a fixed realization of the potential. In this paper we are interested only in the case
of non-stationary time-dependent random potentials. The simplest setting corresponds to the
discrete space-time lattice Z¢*!, where d is the spatial dimension. In this case the random
potential normally is assumed to be given by the i.i.d. field w = {&(x,i) : x € Z%,i € 7Z)},
and H = — Zfzo E(y;, 1). As usual one is interested in the asymptotic behavior of directed
polymers as t — 00.

The first rigorous results for directed polymers were obtained by Imbrie and Spencer [1],
Bolthausen [2], and Sinai [3]. It was proved that in the case of weak disorder, namely when
d > 3 and |B] is small, the polymer almost surely has diffusive behavior with a non-random
covariance matrix. It was later proved by Carmona and Hu [4], and Comets et al. [5] that in
the cases d = 1, 2, and d > 3 with |8] large, the asymptotic behavior is very different. In
this regime, called strong disorder, the directed polymers are not spreading as t — oo but
remain concentrated in certain random places.

Sinai’s approach in [3] is based on the study of asymptotic properties of partition functions
Z! ast — oo. It turns out that if the polymer starts at a point x at time s, then in the limit
t — oo the properly normalized partition function converges almost surely to a random
variable Z7°. Here, in order to simplify notation, we are not indicating the dependence on w.
In a similar way one can consider backward in time partition functions, and prove that after
the same normalization they also converge to limiting partition functions Z” ;o where (y, t)
is the endpoint of the polymer. The proof of the diffusive behavior follows from a factorization
formula proved by Sinai. Namely, a bridging partition function Z,\Cé corresponding to the
random-walk bridge between points (x, s), (v, ), t > s, satisfies the following asymptotic
relation:

Zi5 = )220 + %), €))

where qzy:sx is the transition probability of the simple symmetric random walk, and a small

error term 8,{15 tends to zero as t — s — 00, provided y — x belongs to the diffusive region:
ly — x|l = O(J/t — s). Later, Sinai’s formula was extended by Kifer [6] to the continuous
setting.

The interest in the asymptotic behavior of directed polymers is largely motivated by the
connection between directed polymers and the theory of the stochastic heat equation

1
0 Z(x,1) = EAZ(X’ D +E(x, 1) Z(x, 1)
and the random Hamilton-Jacobi equation

1 1
B @, 1)+ VO, N = SAP, ) =, 1),
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which is related to the stochastic heat equation through the Hopf-Cole transformation
®(x,t) = —In Z(x, t). The connection between directed polymers and the stochastic heat
equation is a direct consequence of the Feynman-Kac formula, see, e.g., [7].

The main conjecture about the asymptotic behavior of the solutions to the random
Hamilton-Jacobi equation can be formulated in the following way. For a fixed value of
the average velocity b = (V®(x, -)), which is preserved by the equation, with probability
one there exists a unique (up to an additive constant) global solution. This means that solu-
tions starting from two different initial conditions ®1(x,0) = b - x + ¥ (x,0), $2(x,0) =
b-x 4+ W7 (x, 0) approach each other up to an additive constant as t — oo, provided ¥ (x, 0)
and W, (x, 0) are functions of sublinear growth in ||x|| [7].

In terms of the stochastic heat equation, a similar uniqueness statement up to a mul-
tiplicative constant conjecturally holds for two initial conditions of the form Z;(x,0) =
exp[—b-x —Wi(x,0)]and Z>(x,0) =exp[—b - x — Va(x, 0)].

In order to be able to prove the above conjecture in the weak-disorder case, one has to
extend the factorization formula (1) to a much larger scale. This is the purpose of the present
article: We prove that the factorization formula holds for ||x — y|| < (t —s)?, where o can be
taken arbitrarily close to 1. Compared to [3], such an extension of the factorization formula
requires very different analytical methods.

In this paper we restrict ourselves to the simplest discrete case, i.e., polymers live on
the discrete space-time lattice Z¢*! and the potential is induced by an i.i.d. field of random
variables. This allows us to make the exposition more transparent. However, in order to prove
the uniqueness conjecture for the stochastic heat equation in the weak-disorder regime, one
needs to consider the parabolic Anderson model, which is discrete in space and continuous
in time. The proof of the factorization formula in this semi-discrete setting, which is based
on similar ideas but technically more involved, will be published elsewhere. The proof of the
uniqueness conjecture itself will be published separately as well.

We conclude the introduction with several remarks:

1. The factorization formula can be extended to the full sub-ballistic regime [|x — y| =
o(t — s5). We are considering a smaller region ||x — y|| < (t — s5)?, which allows for
effective estimates of the smallness of the error term Sﬁ,’é.

2. We believe that a similar factorization formula can be proved in the fully continuous case.
For this, one would need to assume that the correlations of the disorder field {£(x, t) :
x € R?, t € R} are decaying sufficiently fast.

3. It is interesting to study the probability distribution for the limiting partition function
Z = Z7* and for ® = —In Z. Although these probability distributions are not universal,
we believe that the tail distributions have many universal features. We conjecture that in
the case when the probability distribution of £ has compact support, the left tail of the
density for ® behaves like exp [—®!T¢/2] and the right tail decays like exp [—®'*9].
A related conjecture concerns the moments m(l) := (Z'y of Z, which we conjecture to
grow as exp ['%/4]in the limit /| — oo. If the disorder & is Gaussian, then for any 8 > 0
only a finite number of moments for Z is finite. Thus, one can expect exponential decay
of the left tail for ®.

4. The uniqueness of global solutions to the stochastic heat equation and the random
Hamilton-Jacobi equation was also proved in dimension d = 1 [8-10]. The mecha-
nism leading to uniqueness in this case is completely different from our setting. We
should also mention that the case d = 1 corresponds to the famous KPZ universality
class.
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The rest of this paper is organized as follows: In Sect. 2 we derive an expansion for the
partition functions and convergence to limiting partition functions. This allows us to state our
main result, the factorization formula for Zi,’é. We also derive asymptotics for both spatial
and temporal correlations of the field of limiting partition functions. In Sect. 3, we collect
several estimates on transition probabilities for the simple symmetric random walk on Z¢.
Sections 4 and 5 are devoted to the proof of the factorization formula. Finally, in the appendix
we prove the estimates on transition probabilities from Sect. 3.

Notation: Throughout this article the Euclidean norm and inner product in R? are denoted
by || - || and -, respectively. The 1-norm in R is denoted by || - |I1. We simply write a = b
to indicate that ¢ = b (mod 2). For functions A and B, potentially of several variables, we
write A < B or A is dominated by B to denote that A < ¢B for some constant ¢ > 0. The
constant ¢ may depend on the dimension d, the inverse temperature 8 and the law of the
disorder (e.g., through A defined in (6)), or on scaling parameters such as ¢ from Theorem 3
or & from Sect. 4.1. However, ¢ is not allowed to depend on any time or space variables
such as # and z. The same remark applies to every constant introduced in this paper. Finally,
in order to simplify notation, we will write ), to indicate that we are summing over all
z2=(21,...,2) € (Z%", where the value of r will be clear from the context.

2 Setting and Main Result

Let y = (¥u)nez be a discrete-time simple symmetric random walk on 74,d > 3, starting at
point x € Z% attime s € Z, with corresponding probability measure P, s and corresponding
expectation E, ;. As d > 3, y is transient. For integers ¢ > s and y € 7%, we denote the
probability measure obtained from P, ¢ by conditioning on the event {y; = y} by P)ycji. The
corresponding expectation is denoted by E}’§. We also set

g7 =Poo(y: = 2).

Let (§(x, 1)) yczd sz be acollection of i.i.d. random variables with corresponding probability
measure Q and corresponding expectation ( - ). These constitute the random potential in our
setting. We assume that

c(B) = (P00 < o

for B > O sufficiently small. To a sample path of y over a time interval [s, #], we assign the
random action

t
A=A ()= D E, .

Jj=s

Forintegers s < t,x, y € Z%, and inverse temperature 8 > 0, we define the random partition
functions

— J— ) — v’ t
c(B) D g B P,

N N N
ZZ;X_S, and Z)': = E Z,{,S.

yezd xezd

o,
Zy:

r .
Zy

Since c(ﬂ)_(’_5+1)(eﬁ“4§) = 1 for every realization of y, we have <ch,s> = (Zf") = 1.
Notice that the law of the stochastic process (ijg’)feNO with respect to Q does not depend
on x or s. Besides, (chj‘;f)reNo and (Zlyfr)reN0 have the same law.
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Remark 1 This is essentially the model considered by Sinai, where F(x,t) in [3] corre-
sponds to B&(x, t) in our setting. Furthermore, the partition function Z i Z from [3] becomes

c(B)"~*+1Z2" in our notation.

Given z € Z9 and s € Z, define

ePE@s) _ c(B)

he=——2g

As shown in the proof of Theorem 2 in [3], Z zﬁ can be written as

t—s+1
21—X 72—71 Zr—Zr—1 )’
qf =5 ;+ Z Z Giy—s Dip—iy ***Dip—ir—1 91— ’r Hh(zl’ll) (@)
r=1 s<ij<--<i,<t,
Zlyeens ZrEZd

Similarly, one obtains the expansions

t—s+1

’
Zy' =1+ Z Z qlzzz lle S tir Hh(zf’ ij) G
r=1 s<ij<--<ir<t, Jj=1

Zlseees Zre Zd

and

t—s+1

)
Zio=1+ 3 > @S 5 [ThGip. @)
j=1

r=1 s<ij<--<i,<t,

2.1 Convergence to Limiting Partition Functions

As in [3], define
> 2
oy = Z Z (qf) . 5)
t=1 ZEZd

It is well known that g7 < t_% (see, e.g., [11] or Lemma 7). Therefore, as d > 3, there is a

~

constant C > 0 such that

1 > 1
w<CY - Y g=CYy — <oo
=112 ez =112

We also define
r=c(B)2c(2B) — 1. 6)

The following convergence statement for partition functions corresponds to Theorem 1 in

[3].

Theorem 1 For B so small that ag) < 1, the following holds: Ast — oo, Zi,s converges in
L2(Q) to a limiting partition function VA
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Remark 2 Due to symmetry, we also have that

oo Y.t
2o = s—lillloo Zs
exists in the sense of LZ(Q) for all y € Z4 and t € Z.

Remark 3 As pointed out by Bolthausen [2], (Zi,s)tzs is a martingale with respect to the
filtration 7; := o (§(y,u) : s <u <t,y € Zd), so convergence to the limiting partition
functions also holds Q-almost surely by the Martingale Convergence Theorem.

Proof of Theorem 1 We follow the approach in [3]. The right-hand side of (4) has an orthog-
onality structure which we will exploit. Since h(z, s) and h(z’, s”) are independent if 7 # 7
orif s # s, and since (h(z, s)) = 0, we have with Jensen’s Inequality and Fubini’s Theorem
that ((ZL )?) is bounded from above by

2+2 i > (qffjj‘)z . (qf,’__if:l)z <ﬁ h(zj, ij)2>. @)
j=1

r=1 s<iy<---<iy,

Since (h(z, 5)2) = c(8)"2c(2B8) — 1, we find

r

<]_[ h(z,-,ij)2>: [ (B ?c@p)—1)=n" ®)
j=1

Jj=1

Since agA < 1, one has Zf’;l (agA)" < 00, so the expression in (7) is finite. As a result,

sup ((Z)’m)2> < o0,

t>s
which yields L?-convergence by the Martingale Convergence Theorem. O

oo
X,8°

The following theorem gives a rate of convergence to the limiting partition function Z
which is needed to prove the factorization formula in Theorem 3.

Theorem 2 For B so small that ag). < 1 and for 0 € (0, min{% — 1, —In(ag))}), one has
. 2
Jim (¢ = )" (2L, - 235)*) = 0.

Proof For an integer ¢ > s, let
t—s+1
M._ Zt _1 2 _ )Lr Z1—X 2 Zr—Zr—1 2
p=((Zs 1)) = Z Z Giy—s ) - \bip—i,—y ) >
r=1 s<iy<--<ip<t,
Z1seerzr €24
which is monotone increasing in 7. Set

M := lim M; € (0, +o0].
1—00

Then, fort > s,

T—o0

(7. - 722)) = Jim <(z;,s - Z§S)2> <2(M — M) ©)
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<2 Z A Z (qzzl] Sx)z' (qlz,r—lfrll)2 (10)

1<r<In(t—s) S<i| < <ip,ip>t,

+2 > Yy (qfl‘ f)z (qfr’_,f’ll)z. (11)

r>In(t—s) S<i| <<y,

The expression in (11) is dominated by
Z (Old)\)r /S (t _ S)ln(ad)\)’
r>In(t—s)
and

lim (t — $)?(t — )@ =0, 9 € (0, — In(agh)).
—00

The expression in (10) is dominated by

YN Y @)@’

1<r<In(t—s) oeens treN, x;
4+t >t—s

r r
r sz
= X Y Y I @
1<r=<In(t—s) I=11,..., treN, k=1 “x;ezd

=5
0Z ma=s
d

2

e’} 1
§Zr(«m> (1 = )> :

S rean)” Y
r=1

. f—s
Jjz ln(t—‘x)

I\J\&.

J

and

SIS

1—
imr—sf (L5 _ d _
lim (£ —s) ( ) =0, 6€(0,5—-1).

—00 In(t — s)

2.2 Factorization Formula

The following factorization formula for the partition function Z/{j; with fixed starting and
endpoint is the main result of this article.

Theorem 3 Let 8 be so small that agh < 1. For every o € (0, 1), no matter how close to 1,
there exists 6 = 0(0) > 0 such that for all x,y € 74 and s < t with ||x — vl < (@ —s)°,
the partition function Z }Cé has the representation

2 =g (2820 + 8)) (12)
where the error term 5;:2 defined by the formula above satisfies

lim (t—2s)° sup (183:51) = 0. (13)

(t=s)—00 X, yeZ4:||x—y| <(t—s)°
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Theorem 3 is proved in Sect. 4. Notice that the formula is similar to the ones obtained by
Sinai in [3, Theorem 2] and Kifer in [6, Theorem 6.1]. However, we show that the error term is
small not only within the diffusive regime || x —y|| < O (t—s) > ,butalso for |[x—y| < (t—s)°
with o arbitrarily close to 1. This extension beyond the diffusive regime is nontrivial because
the error term in (12) is multiplied by the random-walk transition probability qt}:f, which is

. 1 . L .
itself extremely small for ||x — y|| > (¢ —s)Z2.In a forthcoming publication, we rely heavily on
a continuous-time version of Theorem 3 to prove a uniqueness statement for global solutions
to the semi-discrete stochastic heat equation.

2.3 Correlations for the Field of Limiting Partition Functions

As mentioned in Sect. 1, the distribution for the field of limiting partition functions
(Z3%) xezd sez, 18 an interesting object to study, with several important questions still open.
Below, we state asymptotics for the spatial and temporal correlations of this field.

Theorem 4 Let B be so small that agh < 1. Then the spatial and temporal correlations for
the field of limiting partition functions (Z3%),czd sez, have the following asymptotics.

L. lim ly[47? (<Z$?oz;?0> - <Z§°0><Z$,°0>) € (0. 00);
llyll—o0, ’ ;
[yl =0
. d_

2. lim |s]27" ((Z§9Z5%) — (Z&NZE)) € (0, 00).
|s[—00,
5s=0

It is necessary to take the limit in part (1) along sequences (y,) such that ||y,||; = O for
alln, as Z§5 and Zo"0 are independent if ||y||; = 1. A similar observation applies to the limit
in part (2). The proof of Theorem 4 relies on the following estimates for simple symmetric
random walk on Z4, d > 3.

Lemma 5 The following statements hold:

e.¢]
: d-2 .
lim iyl > D4 € (0,00);

(]
iiylli=0 1=0 xez?
—1
2 Y Y g, < 0.0
s=0 t=0 xez74

Proof For y € 74 whose 1-norm is even,
o0 o0
o> aa T =) a3, =GO, y),
t=0 xezd t=0

where G denotes the Green’s function for simple symmetric random walk on Z?. Theorem
4.3.11in [11] implies that

lim [|y[|“72G(0, y) € (0, 00),
Iyll— o0,
[Iyll1=0

so (1) follows. To prove (2), first notice that for every even s € Ny,

S 0 S
Z Z q;“q‘iﬁrt = Z‘I&—zt = Z qgt'

1=0 yezd 1=0 t=s/2
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It is well known (see, e.g., [12, Chapter 1]) that

lim t2q2 :c € (0, 00).

t—00

Let € > 0. Then there exists 7 € N such that
4 0
c—e=<t2qy <c+e Vt>T.

Thus, for s even and > 27T,

G-

Zqz,g(che) Zt 2’<(c+e)

t=s/2 t=s/2

and

e}
D dn=z (e

t=s/2

s\1-%
) (5) '

Hence,

lim sup s 51 E q2, <(c+ 6) and lim mfs g-1 E qzz > (c —
§—> 00, -2 s—>
s=0 t=s/2 s= 0 t=s/2

Since € was arbitrarily chosen, we obtain (2). ]
Proofof Theorem 4 For y € Z¢ such that ||y|l; = 0 and ¢ € N, the expansion in (4) along
with the properties of h(z, s) yield
t+1 ) 2
t t _ 21—y Zr—2Zr—1
<ZO,OZ)',0) =1+ Z)‘r Z qlzll qtll (qu; tzll) ’ (qtr—lr 1 ) ’
r=1 0<iy|<--<ip<t,

2o zr €24

Along the lines of the proof of Theorem 2, one can easily show that, ast — o0, the expression
on the right-hand side converges to

ad 2 2
X ¥ e () (@)

r=1 0<iy<--<ip,
L1 seees ZrEZd
Therefore,
ZooZoo Z Ar 21 ,21—Yy 22—21 2 Zr—Zr—1 2
{Zo,0 )WO) {Zo,0) Z Z 4i, 4i, Dir—i Ny~
r=1 0<iy<-<iy,
Llyenny Zr€Z
o0 o0
1
=22 ey Y ),
i=0 xezd r=1
and part (1 ) follows from Lemma 5. The proof of part (2) is similar and we omit it. O
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3 Transition Probabilities for the Simple Symmetric Random Walk

In this section we collect several estimates on transition probabilities for the discrete-time sim-
ple symmetric random walk on Z¢, some of which are presumably well known to specialists.
Appendix A will be devoted to the proofs of the results presented here.

Let (Yu)nen, be a discrete-time simple symmetric random walk on z4 starting at the
origin.

Lemma 6 There exist constants c1, ca > O such that the following holds: For everyo € (%, 1)
and & € (0, 1), there exists T € N such that for everyt > T and y € Z% with qty > 0 and
Iyl <9,

! d N
g =z e (55) exp (= Sy exp (= c2r*?). (14)

Lemma7 There exists c; > 0 such that for every y € Z@ and for every linear functional ¢
on R? with |p(x)| < |lx|l, x € RY, we have

U _i
g e’V <12 Z gie?@, VreN.
z€74
In particular,

t

I

y
t

N

q

Fix a linear functional ¢ on R such that lp(x)| < |lx|| for every x € R?. To simplify
notation, we set ¢;: = ¢(e;) for 1 < j < d, where {e;} is the standard basis in RY. Define
forevery 8 = (9',...,09) e R?

1

2d 4
J

d
®H): =E [eig'yl e‘”(y')] = (eigle"’f + eiieje*‘”) , 15)

1

where i is the imaginary unit. Notice that for every 6 € R?,

DO)| < 0) = ) gfe?, (16)
|©)] >4

ze74
where 0 is the zero vector in R?. Furthermore,

D0) = Y g'e?Y, VreN,. (17)
yeZd

Notice also that & is 2z -periodic in every argument, so it will be convenient to work with
the cube C: = (—%, 37”]‘1. It is not hard to see that the inequality (16) is strict for all 8 € C
except for 0% =(0,...,0)and 0': = (n, ..., 7).

Lemma 8 There exist p1, p2 > 0 such that the following holds: For every t € N and for

every z € Z4 such that ||z|| < pit and qf > 0, there exists a linear functional ¢ on R4 of
norm ||@| < ,02@ which satisfies

@/ |®@)| a6 < (1 + O(F%)) gie?@
C
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and

_d ,
qfe‘p(z) >3 Z quew(y).

yeZd

Lemma9 There exist constants p, ¢ > O such that for every t,t' € Nand z,7 € Z¢ with
llzll < pt and g7 > 0, one has

/

ZI% =< (1 + 0(;*%) exp <c (”f—” (lz =21+ 1" = 1]) + ()~ ')) .

t

4 Proof of Theorem 3

The main idea behind the factorization formula, which goes back at least to [3], is that there
is strong averaging for times neither too close to s nor too close to 7.

Consider the representation of Z3’ Y in (2). For fixed r, iy,...,i,, and z1, ..., 2, the
random walk is pinned to the points zp, ..., z, at the corresponding times i1, ..., i. The
proof of Theorem 1 suggests that the contribution to Z %i from r on the order of ( — s) is
negligible. If r is not on the order of (¢ —s), at least one of the gaps i ; —i ;| must be in some
sense large (see Sect. 4.1). In Sect. 4.2.2, we show that the contribution to ijé coming from
two or more large gaps is negligible as well. Thus, the main contribution comes from having
exactly one large gap i; — i;_1, which is then on the order of (z — s). In order for q : Z’ |]
to be positive, z;_1 must be close to x and z; must be close to y. The transition probab111ty

zZ]/—z,, 11 is then close to ¢; ..

Notice that to prove Theorem 3, it is enough to show that if «yA < 1, then for every
o € (0, 1) there exists & > 0 such that

lim 1 sup (I8 =
T yertiyl<ie
This is because for a fixed realization w of the disorder, 83" s (w) can be written as &; R x =S ()
where @ is obtained by shifting @ in space and time. The distribution of the dlsorder is 1nvariant
under such shifts.
Fort e Ngandr € {1,...,t + 1}, let

It,r)y:={i=(G,...,ip) eNy : 0<iy <--- <i, <t}
Forie I(t,r)andz = (z1, ..., z,) € (Z4)", define
a2 =q'q. " a5

With this notation, the expansion in (2) becomes

t+1

Zyo=ai +), Y. 4G z)Hh(z,,z,) (18)

r=1iel(t,r),z

where one should recall from Sect. 1 the notational shorthand ), for summation over all
z=(z1,....2) € (Z%)". The first step is to split the double sum into terms according to
the size of the largest gap between indices, as discussed in Sect. 4.1.
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165 Page 12 of 32 T.Hurthetal.

4.1 Large and Huge Gaps

If there exist o € (0, 1) and 6 > 0 such that (13) (the convergence of the error term in the
factorization formula) holds, then (13) also holds for 6 and 6, where & can be any value in
(0, o). There is then no loss of generality in assuming that o > 3/4, and one may even think
of o as being very close to 1. For a collection of indices 0 = :ip < i) < -+ < i, <lipy1: =1,
the gaps are the differences between consecutive indices, i.e., i1 —ig, i2 —i1, - . ., ir+1 —ir. TO
quantify what it means to have many gaps, we fix positive constants k, k2 € (% (Bo—1),0)
such that k1 < k3. Let T}, € N be so large that 2(+ — *2) > ¢ for all t > T,,. Then define

t—T,) —1, t—T,)" —1>1,
k= 10— T (=T =12
0, t—T,)"—1<1.

Note that k(¢) grows with 7 like £“!. We say that a collection of indices 0 <ij < --- < i, <t
has many gaps if r > k(t).

To classify the size of a gap between indices, fix another constant £ such that 0 < & <
min {1 — 0, k3 — k1}. One should think of £ as being very close to 0. Note that £ 4+« < 1
and that £ < «, the latter because of § <1 —0 < 1/4 < %(% — 1) < k1. Lett € Nsuch
that k() > 1, r such that 1 < r < k(¢), and consider a sequence of indices 0 = ip < i} <

- < i <ir41 =t. We say that the gap between two consecutive indices i;_1 and i; is

° lal‘geifij —ij1 = IS;
o hugeifij —ij 4 >t —rtb.

Observe that the size of the largest gap is necessarily greater than 1/(r + 1) > t17¥1 > (%,
so there is at least one large gap. A huge gap is necessarily large. If there is only one large
gap, then all other gaps are of size less than 7%, so this large gap is even huge. Thus, if there
is no huge gap, there are at least two large ones. Since ¢ must be greater than 7, in order for
k(t) > 1 to hold, we have 2(t — rt¥) > 2(t — t1*5) > 2(t — 1*2) > ¢, so there can be at
most one huge gap. Note, however, that a huge gap is not necessarily the only large one.

Let us introduce some more notation. Fix » € N and r € Ny. For m € N such that
1 <m <r + 1, define the following set of r-tuples:

Li(¢t,r,m): ={(y,...,iy) € I(t,r) : the gap between i,,_1 and i,, is huge} .
Also define
L(t,r): ={(,...,iy) € I(t,r) : thereis no huge gap}.
For t so large that k(¢) > 1, we decompose the expansion of Zg:(t) in (18) as follows:
3
N y,t
Zoo=ai +)_ B},
j=1
where,

Biv’t:= Z Z q; !, Z)l_[h(zj’ ij),

k(t)<r<t+1liel(t,r),z

BZYJ _ Z Z q; (, z)l_[h(z/,lj)

1<r=<k(t)iely(t,r),z
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r+l1 r
B= 3 > > a@n]]he.ip.
1<r<k(t) m=liel|(t,r,m),z j=1

With this decomposition in hand, Theorem 3 follows immediately from the following lemma.

Lemma 10 (Central Lemma) Let 8 > 0 be so small that agh < 1, and let o € (0, 1).

1. Forevery 6 > 0,

B!
lim#  sp L U _o. (19)
70 yiyl=eegl>0 i
2. There exists 0 > 0 such that
B!
lim Y sup { = D _. (20)
7 iyl gl>0 i
3. There exists 0 > 0 such that
0 By’ 1
Jim ¢ sup L4+ = = Z§5205 | ) =0. (1)
yillyll<.q7 >0 9

Sections 4.2 and 4.3 are devoted to the proof of this lemma.

4.2 Proof of the Central Lemma, Parts 1 and 2: Small Contributions

In this section, we show that the contributions of the terms Bly’t and Bg" to Z())' (’) are negligible.
We start with the observation that, by Jensen’s inequality,

() = (). s=02 =

4.2.1 Proof of Part 1: Many Gaps

Let t € N be so large that k() > 1. Since ag1 < 1, (8) and the definition (5) of o4 let us
estimate ((Biw)z) as follows:

())= = » > aaw

k(t)<r<t+1 icl(t,r),z

A k(t)
S ) @l = ) () < %

k(t)<r<t+1 r>k(t)

Recall our assumption that o > %. To estimate 1/(g; )2 on the right-hand side of (22), fix
6 € (o0,1) such that 46 — 3 < 20 — 1. By Lemma 6, there exist constants ¢y, c; > 0
(independent of 0, 6) and T € N (depending on o, 6) such that for every integer + > T and
y € Z4 with ¢} > O and ||y| < ¢°,

g z o1 (55)" exp (= £1917) exp (—ear" )

> —d/2 exp ( _ %t2a71 . czt4‘~”3) > 1d/2 exp ( _ Ct2071)

~
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for some constant ¢ > 0. Therefore,

1 2
sup 772 <<Blyt) > <t (@)D exp (212 71).

villyll<eo g7 =0 (i

Since k1 > %(30 —1) > 20 — 1, we have tz"’l/k(t) — 0 ast — 00, and therefore, for all
6 >0,

1 L A\2
/£ sup i (Bly,t) < 17+ (g0 exp (227 71) — 0.,
4 ( ))2 11— 00
yiliyli<e,q) >0 4t

4.2.2 Proof of Part 2: No Huge Gaps

Let ¢ € N be so large that k() > 1. Then

<(B%"’)2>= Y dan’s Y MM, 23)

1<r<k(r) ieh(t,r),z 1<r<k(r)

where

M ()= Y ¢z

ich(t,r),z
i17#0,ir #t
Now we estimate M; ,(y). Let r € N such that 1 < r < k(¢), and y € Z4 such that
Iyl < t° and q,y > 0. Giveni = (i1, ...,ir) € I(t,r) such that iy # 0 and i, # t, set
H:=li1,th =1ip—i1,...,tp: =lp—ip_1, t,41: = t—i,.Andgivenz = (21, ..., 2,) € (Zd)r,
SetX1: =21,X2: =22 —Z1,---sXr: = Zr — Zr—1, Xr41: = ¥ — Zr. This change of variables
yields
Yoo N2 ([ X1)\2 Xr41)2
g 2" =(q")" - (a1')" (24)

Fori € Ir(z, r), there is no huge gap and hence there are at least two large ones. Let
L={1<j<r+1:1>F}-1,

i.e., (I + 1) gives the number of large gaps in i. There are (» + 1) possible slots for the largest
gap (which is then also a large gap), and (?) possible slots for the other / large gaps once the
largest gap has been fixed. Together with (24), this yields the estimate

,
-
M) <r+D) ( )M,,r,z(y), (25)
l
=1
where
2 N2
Mo i(y) == > (@) (a5
tye =t
Xt 1=y
12t 218
7 N 1<t
The sum on the right-hand side is taken over all 71, ..., #t,+1 € Nand x1, ..., x,41 € 74 that

satisfy the four conditions under the summation sign. In the special case / = r, the fourth
condition is void.
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For given positive integers #711, . .., ¢ strictly less than 5, set
tiel, . ) =t =t — (i1 +- -+ 1);
and for x;41, ..., X € 74, set
X, x) =xt=y = (g o+ X

If [ < r, this lets us write

M= > (@) (ar) ML, 0, (26)

/ ’ x1\2 XN\2 [ X 2
where M, (x'): = > (@) () gty (27)
t+ -t =t
X1+ X 1 =x
12t 218

We now search for a bound for M/ /,, ;(x") when ¢ is sufficiently large.

Claim 4.1 There exist constants C, C', T > 0 such that for every integer t > T and for all
r,l,t', x" as above,

MY, ) S 178 (g2 €A exp (O — D+,
and, in the special casel =r,
M, r(y) < 164 (qty)z Cr Erd=5)/4
We use Claim 4.1 to estimate M; , ;(y) from (26) as follows:
My () S o 6 (g €I e (1 — 1Y)
<75/ (q,y)z (C I_S(Zd_s)/‘l)l (ad exp (C’[‘T'*f—l))r_l_
Then we combine the above estimate with (25) to obtain

,
r 1 r—I
M) S MG+ D Y ( l) (crs@t94) (agexp (17571
=1

r

<t @ r+ 1) (Ct’s(mfs)/4 + agexp (C/t‘”é’l))

Finally, combining this estimate with (22) and (23), we obtain

2 00
( (‘B{“}) S G D (CrEI g exp (Cr ) )
r=1

1
a
2
) =0
as long as 0 < £/4 and hence (20) for every 6 < &/8. To complete the proof of Part 2, it
remains to prove Claim 4.1.

Since d > 3 and since £ < 1 — o, one has
1
-y

lim 77 sup (
q;

—00 y
yillyll<t®,q{ >0

it
(1
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Proof of Claim 4.1 By Lemma 8, there exist constants p1, o2 > 0 such that for every t € N
and y € 74 with lyll < p1t and q,} > 0, there exists a linear functional ¢ on R? of norm
lell < p2llyll/t which satisfies

qtyew()’) > 142 Z qtzew(z)_ (28)

774
Fix t € N so large that k(r) > 1 as well as t° < p;t and pt®~ 1 < 1. Let y € 74 such
that ||y|| < ¢° and g; > 0. The conditions 02t~V < 1 and ||ly| < ¢° imply in particular
that ||¢|| < 1 for the linear function ¢ corresponding to ¢ and y. Letty, ..., #, 41 € N and
X1y ouus Xl Xr4] € Z4 such that the conditions under the summation sign in (27) hold. In the

special case [ = r, replace ¢’ and x” with ¢ and y, respectively, here and in the remainder of
the proof. By Lemma 7, there exists a constant ¢; > 0 such that

X1 X X4l _o(—x") o(x;) Xi
9y 44 491, =€ errrgy;
Jell L1}

< (%) 1_[ (clt/-_d/z Z qtzjew(z))

jell ol r+1} ze7d

_ Lo(=x") (2) —d/2
—e 0 g T ()
)

zezd Jell ol r 41
— (=X v L 7d/2
=/ 00" ] (cltj ,
je{l,...l,r+1}

where in the third line we used the fact that ¢ is a linear functional, and in the fourth line we
used (17), where ® was defined in (15). Since ¢’ < ¢ and ®(0) > 1, it follows from (28) that

®(0) < d(0) < 192} 0| As aresult, for all positive integers #1, ..., 77, t, 41 such that
i+t +t =t andt, >11,...,1 > 5, one has
. dJ2 —d/2
max a - q, q,r+1 <12 ) ¥ ) 1_[ (Cltj /).
X1+ x+x 4 =x" el ot}
Furthermore, the sum ) ¢;'-- “qp, qlr’jl' over all tuples (xi,...,x;,xy+1) such that

X1+ x;+x41 = x" equals qt, , and by Lemma 9 there exist constants ¢, p > 0 such that

ab <q (1+0a"2%))exp ( (nynny — X+ Iyl =) + In(e)(c — 1 )))

for ¢ so large that 1° < pt. Therefore,

> (@) (@) (@) s qf qf o™ T] (C"f_ dﬂ)

XXy 1 =X jellunlr+1)
dj2 '\2 —d/2
<@ Py ] <cltj />,
Jell, ol 41)

/

where P (1): = exp< (2||y||||y—x I+ IVl =) +In(e)(t — 1 )) for a constant ¢’ > 0.

In the second line of the estimate above, we also used that ||¢|| < p2||y||/?.
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Together with Lemma 14 from the appendix, we obtain the following estimate on
M
t,r,l

ML, () St ()P P > I1 (clt]dﬂ)
)

te =t Jelllrl
1=t =18

dj2
: e t
< (gh)? ¢TI (;) P(1),
dJ2
_ : 12— t
<754 (g ¢! G (;) P(1),

where C > 0 is a constant. It remains to bound (¢/t' Y4/2 P(t). We estimate the following
expressions involved in (t/t’)d/ZP(t) like so:

1\ d. t—1 R :
<?) 5exp<§1n(t)t_—l>, t—t'= Y"1 < (=D,

j=I+1
r r
ly=x'll< D> lxll < Yt <= Dif,

j=l+1 j=i+1

y g 1 i : X Xral
where ijz.;_] llxjll < Zj=l+1 tj is valid under the assumption thatg;,' ... ¢,""' > 0. Then,
using ||y < ¢, we obtain

£\4/2
<?> P(t) <exp (C'(r — "5

for some constant C’ > 0. This completes the proof of Claim 4.1. O

4.3 Proof of the Central Lemma, Part 3: The Main Contribution

Let t be so large that k(rf) > 1 and let y € 74 such that ||y| < ° and qty > 0. For
ielj(t,r,m)andz € (Zd)’, define
a4, , 02 =g ...q" g (29)
where the factor with the hat is absent; in other words, we set the transition probability
corresponding to the huge gap equal to 1.
Now decompose B3 ! further, depending on the position of the huge gap 1) at the begining,
2) in the middle, or 3) at the end, as follows:

3

B =a) (),

i=1

where

|
EES SR M) Lo

1<r<k(t)iel(t,r,1),z

IPMEED DD DD DR ()1 || LICTNNE

2<r=<k(t) m=2 iel|(t,r,m),z j=1
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Fjv’t: _ Z Z qt)ir/Jr\l(L z) 1_[ h(zj,ij); (30)

L<r<k(t) i€l (t,r,r+1).z j=1
and the error terms are given by

y

L= )" ) q”q_q 4,;0- Z)Hh(zf”f)

1<r<k(t) iel(t,r,1),z ! j=1
r qu Im—1 _ q
), 1 im—im t
e Y Y L T ke,
2<r<k(t) m=2 iel|(t.r.m).z a =1
q\ Zr _q
N t—i, t
L§ L= Z Z liq/\(l z)l_[h(zj,lj)
l<r<k(r) iel (t,r,r+1),2 a/ =1

Notice that F}"', F;"', F;"" are well-defined even if g/ = 0. We first show that the
contribution from each error term is negligible.

Lemma 11 There exists 6 > 0 such that

3
>

i=1

J=0

Proof Tt is enough to show that there exists & > 0 such that for i € {1, 2, 3},

lim #  sup <(L§”’)2>=o. 31)

=00 )
yiliyll<t.q) >0

lim ¢° sup <

—0o0 )
yillyl<t®,q{ >0

For ¢ so large that k(#) > 1 and for y € 74 such that [lyll <t° and q,y > 0, one has

y.t 2 (‘Iz} tx1 ...t )2

, r Xr 1= =l

()= T waor T ) S

1<r<k(t) tesi x qr

where g;(r): = 1ifi = 1,3, a,(r): = (r — D)1,>2,
=i e r,tlzo,tz,..-,tr>0} _
gi={t=t...neNg: =00 RO = s,
- ro.o e =000, 801 >0
ur.—{t—(tl,...,tr)eNO. t1+-~-+t,§rt§ ,

and where the sum ) is taken over all x = (xy, ..., x,) € Zy.

The convergence in (31) relies on ¢;_ ,’fl,,,',';,xr belng close to g; in the following sense:
Let p > 0 be the constant from Lemma 9, and assume that 7 is so large that 1 < pt. Let
1 <r <k@,n,t- € No, to, ..., t,_1 € Nwith; + --- + 1. < rt5. Without loss of
generality, let xq,...,x, € Z4 such that q,’jl e qtf " > 0, as otherwise the contribution to

Vii\2y -
((L;")7) is zero.

Claim 4.2 There exists a constant c3 > 0 such that

qV X1 —Xr _qy 2 2
(rt——tr) < (140079 )exp esrt ) 1.
‘Zt
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Using this claim we can bound Squ:Hstt",q;”>0<(Lzy’t)2> by

o0

Sor o Y @) @) ((1 + 0(1—%)) exp (c3r®+E1) — 1)
r=1 (1,001 ENT X
o0

< @ahyr ((1 + O(t‘%)) exp (carto 1) — 1) . (32)
r=1

Let 6 € (0, min{2/5, 1 — o — &}). The definition of the Landau symbol O(t’é) implies
that there exist constants C, T > 0 such that forevery t > T,

t? ((1 + O(tfg)) exp (C3rt”+571) - 1)

oE—146 exp(cart® -1y — 1
cyrtots—1

2
< ¢3rt + Ct75  exp (cart 1)

< (c3r + C)exp (c3rt” 571

where, in the third line, we used that (¢* — 1)/x < e* for every x > 0. Hence,
o
>
r=1

o
< Z (g exp (C3IJ+$_1))V (631’2 +Cr).
r=1

(@it r (14 06a™5) exp (carH71) - 1)‘

For ¢ € (agh,1) and 7 so large that ag exp(c3t®t€~1) < ¢, the series on the right is
dominated by the convergent series Y _ ¢" (c3r? 4+ Cr). Dominated convergence and (32)
then imply (31) for 6 € (0, max{2/5,1 — o — &}).

To complete the proof of Lemma 11, it remains to prove Claim 4.2.

Proofof Claim4.2 Let x': = x; +---+x, and t': = #; + - - - + .. Observe that q[y:t)f > 0:
Indeed, notice first that t — ¢/ > r — k(£)f5 since ¢ < rif. As k(r) is of order t*! and
k1 + & < 1, the term ¢ — ¢’ is of order . Moreover,

r r
Ly =x"I <27+ lxjl <17 4+ ) 1 <17 + k),
J=1 Jj=1
which is of smaller order than ¢+ — ¢'. Finally, t — ¢’ and ||y — x’||; have the same parity

because ¢; > Oandq;'...q;" > 0.
!
y—x

»~J > g, then combining

—x! ; ;
Now, we derive an upper bound on |g ;7 — g;'|/q;. If q
Lemma 9 with the estimate ||x’|| < ¢’ < rtf gives

g, —ai _2 oot g @)
7y5(1+0(r 5))exp e (2t 4 =2 ) ) -1
q;

< (1406 H)exp(crrm ) — 1 (33)

for some constant ¢; > 0. If g}’ > qty:;f/, we argue as follows: Let ¢+ € N be so large that
1 + k@)t < p(t —t'). Then

ly —x'Il <% +k()i* <p@—1)
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and Lemma 9 with the estimate k()% < tats <o (coming from & < kp — k] < 0 — K1)
yields

y—x' y y
lg,_; —q; | _ 4

@ g
1 + k()i I3
| o+E—1
< (1 +o@ s)) exp (cort )— 1. (34)

Using that (a — D2 < a? -1 for every a > 1, in either case (33) or (34), we have the
following bound:

CI'V_X/ -q ’ 2
Lyt E (1 + O (t_g)) exp (C}rt“+§_l) _ l,
q;
where c3 > 0 is a constant. O

In order to deal with the F;’s defined in (30), the strategy is to first define suitable
truncations of the partition functions. Fix &1, & satisfying

0<& <& <é,

and notice that since £ + o < 1, we have §; + o < 1. Now set

Too=1+ Y, > q/\(nz)]"[h@,, i)

1<r<tb141i€l(t,r),z
i <t%2

and

=1+ Y Y (lz)]"[h(z,,z,)

I<r<t141i€l(t,r).z
—rf2<iy

where qy/\(i z) and qy - (i, z) are defined according to (29), with qy/-\(i Z) not depending

on y. Notlce that T(f o and T’ are truncations of the partition functlons Z} 0.0 and Z0 ,
respectively (see (4) and (3)). The convergence statement in (21) will follow from the lemmas
below.

Lemma 12 There exists 0 > 0 such that

s 3 I S|F<p,a< Fy' = T = DT 1)’> =0, (35)
yi=

Jim * sup (|} — (13" - 1) =0, (36)

Iyll<ee
LN e < =T I)D =0. (37

y < a

Lemma 13 There exists 0 > 0 such that
lim 0 s (Toy’fT(;O—zooz} ‘) 0. (38)
yll<t®
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The convergence statement in (35) is shown in Sect. 5.1. We show the convergence
statements in (36) and (37) in Sect. 5.2, and the one in (38) in Sect. 5.3.

5 Main Contribution: Proofs of Lemmas 12 and 13
5.1 Proof of Lemma 12, (35): Convergence for One Huge Gap in the Middle

One has
(Tgo = DT = 1)

=2 X X 2

I<r<t5141 1<s<t¥1410<ij <--<i, <152, 1—152 <l <--- <l <t,
2yenzr €24 €15 €LY

r s
g oal T )l H h(zj.ij) | [ hler: o). (39)
Define the set

i e < &
V(t,r,m)::{i:(il,...,ir)ell(t,r,m): 0=<ip < <imy =t }

t—t2 <y <o <ip <t
and its complement in [ (¢, r, m)
W, r,m): = {i= (1,....0,) e it,r,m) @ jp,_| > 52 or im <t—t§2}-

Recall the notation q} (i, z) from (29). Making the change of summation indices r: = r +s
andm: =r + 1in (39) one has

(To— DI = 1)

= Z Z Z q[y’,;l(iz)l_[h(Zj,ij)

2<r<if142 m=2 ieV(t,r.m),z Jj=1
r
Y e ,
+ 2 2 2 audo][]he.ip. (40)
51 42<r, r—tfl<m, i€V(t,r,m).z Jj=1

r<2:5142 m<t¥142

The identity in (40) allows us to rewrite 3™ — (T3 o — D(T3"" — 1) as f3] + f35 + f33-
where

=X > Y auGa]]ra.ip,

reR! m=2 ieW(t,r,m),z j=1

22 _Z<Z Z qty’,;l(i»z)l_[h(zj',ij)

reR2 “m=2iel|(t,r,m),z Jj=1

oo Y daun]]hrG z',~)>,

r—t51<m, i€V (t,r,m),z j=1
m<té1+42
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frs: —Z Z Z q,y,,;,(i,l)]_[h(z,',ij),

reR3 m=2 iel|(t,r,m),z j=1

Ri={reN:2<r<th® 4+2},R2={reN: 51 4+2 <r < 2/5 42}, and
R:={reN: 2/5 +2 <r <k(@®).
In order to prove (35), it is then enough to show existence of 8 > Osuchthatfori = 1,2, 3,

lim ¢ sup <<f2);’i’>2> =0. 41

=00 y|<to

Fori =1, 3, one has

H=Y )Y > ¢ 60% (42)

reRr? m=2 ieHi(t,r,m),z

where Hl(t, r,m). = W(t,r,m) and H3(t, r,m): = I (¢, r, m). Notice furthermore that
((f55)?) is bounded by (42) with i = 2 and H%(¢, r, m): = I, (t, r, m). Now, we take up
cases i = 1, 2, 3 separately.
Case i = 1. Since fori € W(¢, r, m),

i+ G2 =i+ + Um—1 — im=2) + (1 —im) + -+ (¢ —ip)

=im—1 —im + 1 = max{im—1;t — im} > t&,
the expression in (42) is dominated by

Z AT Z (q;il) ‘It, < Zr (Otd)\)r Z .L% S t(%‘z*‘?l)(lf%).

reR! foentr€NX 2 J
t1 4t >152 #l42

This implies (41) for 6 < (& — &)(% — 1).
Case i = 2. The expression in (42) is dominated by

o (@) @) = Y rean)”
reR? . tr€NJX s

From this estimate we deduce (41) for every 6 > 0.
Case i = 3. The expression in (42) is dominated by

Z r(ogh)’,

reR3

which converges to 0 as t — oo faster than any polynomial by the same argument as in the
casei = 2.

5.2 Proof of Lemma 12, (36) and (37): Convergence for One Huge Gap at the Start or
the End

We only show the convergence statement in (37) as the proof of (36) is analogous. Write

FSy’t - T(;,O+ 1= fé;l +f3t;2’
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where fori =1, 2,

fr=)_ Y a0 z)]‘[h(z,, i)

reR ieH! (1,r),z
andRU:={reN: 1l<r<tf +1},R:={reN: 5t +1 <r <k},
Hl(t,r):=:i=(i1,...,ir) LO=ip <. <ip=rt },H};:Il(z,r,rﬂ).

i > 1%
Fori =1, 2, one has

2 y .
<(f3’;i)>=2” > g0
reR! ieH’(t,r),zy

Convergence in the cases i = 1 and i = 2 works then as in the proof of (35).

5.3 Proof of Lemma 13: Convergence to Limiting Partition Functions

Let us first show that the truncated partition function 7 , converges to the limiting partition

function Zg5, in the L? sense and obtain a rate of convergence. We will prove that there exists
6 > 0 such that

Jim (75— Z§0)*) = 0. (43)
One has
Zoo— Too = Ni+ Ny,
where

Ni: = Z Z 4/\(1 z)l_[h(z], ij)s

l<r<éb141i€l(t,r),z
l,>t§2

Nj:= ) > ¢ Z)l_[h(zl,l/)

141 <r<t+11€l(t,r),z

It is then enough to show existence of 6 > 0 such that

lim z9<(1v;)2> —0, ie{l,2). (44)

11— 00
We have
2
(V)= > Y dan’s Y @i
15|+1<r§t+1 iel(t,r),z r>té141
s0 (44) holds for i = 2 and for every 6 > (. Moreover,
12 _ r y . 2
((Wir)= X ¥ X gl

l<r<tfi41  i€l(tr)x
i >r52

r x1\2 X\ 2

S Z A Z (qfl) '--(%,) s
I<r<éfi41  t,.t€NX
4+t > 152
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s0 (44) holds fori = 1 and 0 € (0, (& — 51)(% — 1)). This implies (43). Combining (43)
with Theorem 2, one obtains in particular that there exists 6 > 0 such that

lim ° <(T(§YO - ng’o)z) —0. (45)

—>00

To complete the proof of Lemma 13, notice that

)= {173 (0 - 28]} + {|750 (737 - 222 )

Therefore, we obtain the desired result by applying the Cauchy-Schwarz Inequality to the
two summands on the right-hand side, and using (45) together with

tim ((75,0)°) = ((28%)°) < oo.

—00

t oV oo it
<‘To,oT0 —Z50ZZ
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Appendix A Proofs of Estimates for Transition Probabilities
A.1 Proof of Lemma 6

For t € Ny, set y;*: = y». Then y* is a random walk on the lattice (Zd)ev consisting of
those points in Z¢ whose coordinate sum is even. If {e j}1<j<a is the standard basis for
RY, then {e; +e; : 1 < j < d} is a basis for (Z9)ey. Let L : RY — R? be the linear
transformation mapping e; 4 ¢; to e; for 1 < j < d, and define y;: = Ly,*. Then, y is an
aperiodic, irreducible, symmetric random walk on 74 with bounded increments, so it satisfies
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the conditions of Theorem 2.3.11 in [11]. Thus, there exists p > 0 such that for every i € N
and z € Z4 satisfying ||z]| < pi, we have

d
~ - d \? d 4
G =PGi=2=2(—) exp(——IL"zI*)exp( O + ”Z” '
4i 4i

Now, fix o € (%, 1),6 € (0,1),and let T € N be so large that 1 + 17 < (t — 1) and
17 < mt for every t > T, where ||| L]|| is the operator norm of L. We distinguish between
two cases: ¢ is either even or odd.

EVEN CASE. If t = 2m for some m € N, then we can prove a slightly stronger statement:

Claim A.1 There exist constants ¢y, co > 0, independen{of o and &, such that (14) holds for
everyevent > T andy € 74 with qty > Qand ||y|| <1t°.

The difference to the conclusion of Lemma 6 is that the estimate holds for || y| < % and
not just for ||y|| <. To prove this claim, fixt =2m > T and y € 74 such that q% >0
and ||y|| < (2m)°. Then g3,, = G- Since [ Lyll < [ILIIIy] < LI < pm, one has

Ly ¢ L, Lyl
Gn’ =2 (557) " exp (= 5 11y11) exp (0 (; +

m3

d

4 ~
> c1 (5%)% exp (— 4 lyl1%) exp (— car™ )

for some constants ¢y, ¢ > 0.

ODD CASE. Now, suppose = 2m+1 > T forsomem € N.Fix y € 74 such that qivm+1 >0
and [|y]l < (2m + 1)?. Let E be the set of standard unit vectors in R? and their additive
inverses. Then

qzm+1 Zq2m qi = ZquZm'

ZEZ‘I zeE

Since [ly —zll < 1+1° < (t — 1)° = (2m)? and ¢3,° > O for every z € E, then using

Claim A.1, we can bound q%m Tl from below as follows: There exist c’l, c’2 > 0 such that

¢ d
Gt = 55 (35)F exp (= ch@m =) Y exp (= gy —2I?)
Z€E
¢ o
> L (5 e (= b exp (= iy —erlP). (AD)

In addition to + > T, assume that 7 is so large that

d 1% N 1+42t° 1
X > —.
P -0 " -1 2

Since |y —e1 > = [yII> +1—2y-e; < |yl + 1 +2[y|, it follows that

exp (= 21y —erl?) zexp (= & (Iy12 + 1 +211))

20 o
>exp (= £1v17) exp (- 4 (72 + 527))
>Lexp (- £1yI2).

Plugging this into the right-hand side of (A1), we obtain the desired estimate.
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A.2 Proof of Lemma 7

Recall from Sect. 3 that 9 = (0,...,0) and 0! = (&r,..., 7). Fore > O and j € {0, 1},
let Dj.. = eR! : |6 - 91|| < ¢}. Let ¢ be a linear functional on R? such that

lp(xX)| < |Ix|l, x € R?, and let & be the corresponding function defined in (15).
Claim A.2 There exist €, § > O such that, for j € {0, 1},

‘ D 6)
@(67)

e—0l10—0712 for every 6 eC\D“f_]

Proof of Claim A.2 For j € {0, 1}, define scaled versions of the gradient vector and the Hessian
matrix of ® at 6/

VO (6) 1 V2o (6/)
ji=—i - and Hj:= —_—
O (67) ’ 2 d(O))
A simple computation shows that the matrix H; is diagonal, and that forevery/ € {1, ..., d},
the I-th component of G ; and the (/, [)-entry of H; are, respectively,
inh h
Gl = Smh@) g gt 2 Cosh@n) (A2)
J d®(0) J 2d®(0)

If we Taylor expand @ around 6/, we obtain

‘ ®(0)
)

= ‘1+iGj-(0 — 07y — (0 —07) - H;©O —07) + 0(||0—0/'||3)‘

:(1_ﬂ@_m)¢h@_gm+ag.w—ehﬁ+ouw—9W3Yﬂ

Here and in the sequel, g(6) = O(f(6)) means there exists a constant ¢ > 0, independent
of ¢, such that |g(0)| < cf (). In the Taylor expansion above, the constant ¢ corresponding
to the error term O (||9 -6 3) may be chosen independently of ¢ because of the assumption
that [|¢|| < 1. Notice from (A2) that Go = G| and Hy = H|, so in order to prove Claim A.2,
it is enough to consider the case j = 0, where 9/ = ©,...,0).If we write 6 = (01, ...,6g),
then, using Jensen’s Inequality for sums,

(Go-6)” < }:mmuwD@

- ddD(O)

Using the expression for Hy in (A2) as well as [|¢|| < 1, we obtain

d

260 - Hy — (Go - 9) > L e"“’"@z >

> = 2> o2,
0) & de®(0)

Thus, there exist ¢ > 0 and a constant ¢ > 0 such that for every 6 with |0 < ¢,

@(9) 2 3 12 n1/2
0 o(le <(l—c|b .
’¢© ( e O +oer)) = (1 -clor)
Since the map 6 +— ‘ D)/ P(0) | is continuous and strictly less than 1 for every 6 € C except
6%, 601, it follows that

(9): = sup {|®(6)/D(0)|: 6 €C; 101,16 —6"1 > ¢} < 1.
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In fact, one even has sup,i<1 (¢) < 1. Hence, if we choose ¢ € (0, ¢) so small that
(1 —¢l611*) = (supy,y<i (¢))* for every 6 € C, then Claim A.2 follows with §: = ¢/2.
Fort € N, let ®' be the Fourier transform of ®’; i.e.,

— 1 .
Dl(z):=—— [ ®O)e a0, 74,
(2) 2n)d /c ®)e Z€
Since ®(0)' = E [eie'yf e‘p("’)] , one has

— 1 )
— — ) 0-(y—2) _ 2,0(2)
()= Y Py =) W/cel V=D 4o = gFe? . (A3)
yezZd
Now, we estimate with the help of (17) and Claim A.2:

O |

(0)

2,90 <

1 ! _ 1
U= /c (@[ do = /c

1 / —5t]102 / —stlo—6"]2 e
< e do + e dé g e?Y)
@2m)d ( o\DE C\D 2

yEZd
.2 /e—5z||9n2d9 S gler.
= @n)d Jpa !
yezd

4o Z qtyeﬁﬂ(y)
yezd

Finally, for some constant C > 0,

/ ef&”eHz do < C/Oo rd71675’r2 dr = Ctid7 /00 pd71675p2 dp.
R4 0 0

A.3 Proof of Lemma 8

For j € {0, 1}, let Bj: = {# € C : |0 — 67| < t~%/5}. Recall from (A3) that for every
z € Z4,t € N, and for every linear functional ¢ on R satisfying ||¢| < 1, one has

1 .
20@ — _— | d@) e 4o =Ty + 1 + 1
q[e (zn)d A ( ) e 0 + 1 + )

where

1 < 1 ‘
1,-:=7d/ ®0) e ?do and I:= — d@B) e do.
(2m)¢ Jg; Q2m)* Je\Bous:)
Then we find
1 t 1 1
— | [®®)|" do — g7e*@ < 7/ ®@)|' d9 — Re(;
G |10 40 i _je{ZOI} @ Ji, 1) o

+ —=—— dO)| db. (A4)
@m)? Je\ous) | |

We now estimate the expression on the right-hand side. First, we show that the linear
functional ¢ can be chosen in such a way that for j € {0, 1},

2r)d /B, |©(0)|" d6 — Re(l)) = 0(r‘2/5)/c |®©)| 6. (AS)
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The idea is to choose ¢ as a function of z and ¢ in such a way that the linear term in the Taylor
expansion of d>(9)e_’z'9/’ around 6/ vanishes, i.e.,

®OHV <e—iz~9j/t) + e—iz‘dj/tvq)(g./') =0.
If we denote the kth component of z by zg, this is equivalent to

z _ sinh(g) _ sinh(gp) <k <d

t d®©0) Y4 cosh(g)
by virtue of (A2). Let F : R — R¥ be given by

d

sinh(xy)
Fxi,...,xq): = Z %
=1 > 7—1 cosh(xy)

Forr > 0and x € RY, let B, (x) denote the open Euclidean ball of radius r centered at x.
Since F(0) = 0 and

1
det DF(0) = —; #0,

the Inverse Function Theorem yields existence of p; > 0 and an open neighborhood U of
O such that F : U — B, (0) is a diffeomorphism. Therefore, for every t € N and z € 74
with ||z|| < pit, there exists ¢ € U such that F () = z/t. Since F~! is differentiable and

F~1(0) = 0, there exists p, > 0 such that
_ Izl
lell = 1F~ /0l < 2=

Without loss of generality, we may assume that p;po < 1 so that |¢] < 1.

Fixt € N, z € Z¢ such that ||z]| < p17 and gf > 0, and the corresponding ¢ € R? such
that F(¢) = z/t. We identify ¢ with the linear functional mapping ey to ¢ for 1 < k < d.
For this choice of ¢, the linear term in the Taylor expansion of & (6)e~¢%/? vanishes, so we

have for j € {0, 1} and 6 € B; (|0 — 67| < 1~ 3)

D@)e = = D)) 4 (0 —07)- A0 —0)) + 010 — 07 )

©—07)-A;0—0))
q;(gj)e—izﬁf/t

= d @) i/ (1 + + 0(:‘“)) . (A6)

where A is the quadratic form in the Taylor expansion of ®(0)e 20/t The error term

0@~ is complex-valued, whereas the entries of A; / U )e‘iz'oj/ ! are real numbers.
Let x;(6) and y;(8) denote respectively the real and imaginary part of

0 —07)-A;00—0))
(D(Qj)efizﬂf/t
Then the left-hand side of (A5) can be written as follows:

@ (0)
@m)? Jg

+ 0@7%P).

| <|xj ©) +iy; @) — Re((xj ©) + iy,»(e))’)> de. (A7)

Here, in the case j = 1, we used the assumption that g7 > 0 and hence ¢ and ||z||; have
the same parity: as t = ||z||1, one has d)(@l)’e_iz'(’1 = @ (0) (=1 e 7zl = & 0). If we
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represent x; (@) + iy; () in polar form, then the modulus is |<I>(9) / d>(0)| and the argument
is of order O (r=%/). As a result, the integrand in (A7) can be written as
LI

(1=cos(0071))) = oy O,

|o@)|
D (0)!

which yields (AS).
We continue estimating the expression on the right-hand side of (A4) by showing that for
F(¢p) = z/t, one also has

2
Q2m)4
By Claim A.2, there exist €, § > 0 such that the left-hand side of (A8) is dominated by
t
2200 </ e—S101 g +/ €_8t||9_012d9> < @(0)’@‘6’1/5.
C C

(2m)d \(BoUD*) \(B1UDY)

f EIOIRE gt—2/5/ |®©)| a6. (A8)
C\(BoUBy) c

Here we used that
C\(BoUB) CC\[(BoNDY U B NDH] S [C\BoUDD]U[C\ (B UDp)].

1/5 . .
As e~ < +72/5¢=4/2  the estimate in (A8) follows once we show that

[ (12ON

We have

1 iz t . t
J> — ®(O)e 120/ d0=/ x0(0) +ivo(®)| do
= w07 s | far= | y0(0)|

Zcos(O(l_l/S))/ 0@ d6 = (1 + 0(:‘2/5))/ |x0(®)]" a6,
Bo Bo

where we used (A6). For 6 € By, one has xo(8) = exp ((9 . A09)/<I>(0))(1 + 0(t_6/5)), SO
we can continue the above chain of inequalities as follows:

Iz (L+0a™))(1+ 0GP / exp (z%@e) do
Bo

pe / exp (te i A09> do z[ e—<tlel® g9 > =42,
Bo @(0) Bo

where ¢ > 0 is some constant. Combining (A4), (AS), and (A8) yields

z,0(z _ 1
ez (1+06) W/C [@©)[ 6 (A10)
and hence
1 —
ch 0@ a0 < (1+ 062/ gie?.

To show that

_d y
gie? D > 172 Z q; eV,
yezd

one simply combines (A10) with (A9) and (17).
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A.4 Proof of Lemma 9

Let p: = p; and pp be as in Lemma 8, and let 7,/ € N, z, 7/ € Z¢ such that ||z|| < pr and
gf > 0. Let ¢ be the linear functional from Lemma 8 that corresponds to ¢ and z, and for
which [¢|| < p2llz|l/t and

2 )d/|d>(9)| do < (1+0(; 5)) 2,9 (ALl

We consider two cases: t’ > t and t’ < ¢.
CASE “t’ > t”. By (A3) and (16), one has

g e < oy /|q>(9)| do < d0)" ! o) /I@(@)l de.

Furthermore,

D) " <  l0IE=0 < po2lizll’ =)/t

The estimate in (A11) then implies

/

Z
‘Lz’ < (1 Lo (,—%)) 9@ pr2ll =)/t
q;
2
< (1 +0 (r—s)) exp (,Ozu (Iz =2l +1¢ — z|)> .
CASE “t' <t”.1f t’ < t, the function x — s convex, and Jensen’s Inequality implies
t'/t L ,
gi et < ((2 n /|q>(9)| d9> =20 J " <0 I, (A12)

where J, was defined in (A9). Since J; = 1=4/2,

, =1/t t—t
5 < (czt%) Ji < exp (C3 In(z) ; ) Ji (A13)

for some constants c3, c3 > 0. Combining (A12) and (A13), we obtain

’ l‘,
qf, < e—w(Z)(z ¥ /|q>(9)| do exp <c3ln(t) )

Together with (A11), this yields

/

z .
q, (1 + 0([—3)) ((p(z — )t ln([)t [ t )

q =
< (1 T O(f%)) exp <c (”j—””z — 4+’ _tt ))

for some constant ¢ > 0.
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Appendix B A Calculus Estimate

Lemma 14 There exists ¢ > 0 such that for everyt € N, I € Ny, and M > 0,

I+1 cl

NI 57_1)t_%. (B14)

H+-Fh41=t, j=1 M(z
Hoensti1 2 M

The sum on the left-hand side is taken over all positive integers t1, .. ., tiy that satisfy the
two conditions under the summation sign.

Proof We choose
c: = 29 max {;’ (%) s (% — 1)_]} s

where ¢ is the Riemann Zeta Function, and prove the statement by induction. In the base
case [ = 0, the left-hand side of (B14) is either zero (if t < M), or becomes

0

=m0

In the induction step, suppose that (B14) holds for some [ € Ng. Then,

(S
SIS

=

1+2

S 14t = Z( S e %)m B15)

4 Hipa=t, j=1 U ttpa=t, tit-tnpr=t’, j=1
t,.stiq2 =M t' 2> M  tenti 1 =M

L\

For every ¢/,

> Iy Al
Wttt =t j=1 M (j )
Hyentiy1 =M

by induction hypothesis. Hence, the right-hand side of (B15) is bounded from above by

> (@) 812, (B16)
l+2
M<2 1)

t+t[+2 t,
't 42>M

We have

g _d
> oOTii=2 Y @O il

'+ 0=t, '+t 0=t
t 0= M t'>t0>M

Ift/ + 140 = tand ' > 149, it follows that t' > %, so the expression on the right-hand side
is bounded from above by

28H78 3 (B17)

If M > 2, we have
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IfM <2,

S nd =) <ot im-d
+2 — 2 2 :

I142>M
The expression in (B17) is therefore less than c¢M 1’(’zlt’%. Combining this estimate
with (B16) yields

1+2

t.
> Iy
H+tt2=t, j=1
fyentip2>=M

I+1

I

c

d
EEE—
MUA+DGE-D

=
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