We begin this thesis with a discussion of problems from geometry and combinatorics, to which methods from equivariant algebraic topology have been successfully applied in the past.
The generalised Nandakumar & Ramana~Rao problem (due to Karasev, Hubard, & Aronov and Blagojević & Ziegler) asks whether given a full-dimensional compact convex body K in R^n, n-1 continuous real functions on the space of all full-dimensional compact convex bodies in R^n and a natural number m, one can always find a partition of K into m convex pieces of equal volume such that the value of each function is equal on all the pieces of the partition.
Inspired by this problem and recent parameterised generalisations of mass partition types by several groups of researchers, we formulate a parameterised version of the Nandakumar & Ramana~Rao problem, where we aim to equipart j>n-1 functions, but are allowed to choose a convex body K from some family parameterised by a vector bundle E over a CW-complex B.
After we make the notion of "parameterised by the vector bundle E'' precise in Chapter~II, we follow the strategy developed by Karasev, Hubard & Aronov to formulate a topological criterion for the existence of solutions to the parameterised Nandakumar & Ramana Rao problem. Due to the limitations of our topological methods, we restrict our attention to the case when m equals some prime p.
Chapter~III contains a brief overview of various standard algebraic topology results that we use extensively in the later chapters.
In Chapter~IV we extend the results of Jaworowski concerning Fadell-Husseini indices of sphere bundles, equipped with free fibrewise action of the cyclic group Z/Z_p, by considering the symmetric group S_p. Next, we compute the index of the fibrewise configuration space Fconf(p,E) of p distinct points with respect to S_p in the case of vector bundle E of an odd rank. In the case when E has an even rank, we provide bounds on the index, showing that the upper bound is tight in some cases. Then we change the group that acts on E, and compute the index of the space Fconf(p, E) with respect to cyclic group action in the special case when E admits two linearly independent nowhere zero sections.
In Chapter~V we use these computations to find a partial solution to the parameterised Nandakumar & Ramana~Rao problem. For any pair of a vector bundle E and a prime p, we describe a range of j such that the parameterised Nandakumar & Ramana~Rao has a solution for the family of convex bodies parameterised by E, the desired number p of pieces in partition and a choice of j appropriately defined continuous functions. Finally, we apply these computations to the case of tautological bundles over the Grassmannians.
Die Dissertation beginnt mit einer Diskussion einiger geometrischer und kombinatorischer Probleme, zu deren Studium sich Methoden der Äquivarianten Algebraischen Topologie in der Vergangenheit als geeignet erwiesen haben.
Das verallgemeinerte Nandakumar & Ramana~Rao-Problem (nach Karasev, Hubard & Aronov, sowie Blagojević & Ziegler) besteht in der Frage, ob sich für einen gegebenen volldimensionalen, kompakten, konvexen Körper K im R^n, eine Familie von n-1 stetigen reellen Funktionen auf dem Raum aller solchen Körper im R^n, sowie eine gegebene natürliche Zahl m stets eine Partition von K in m konvexe Teilmengen gleichen Volumens finden lässt, derart, dass jede einzelne der Funktionen auf allen Teilen gleiche Werte annimmt.
Wir formulieren eine parametrisierte Version dieses Problems, die nach einer Gleichteilung bezüglich einer Familie von möglicherweise mehr als n-1 Funktionen fragt, allerdings erlaubt, den konvexen Körper K aus einer durch ein Vektorbündel E über einem CW-Komplex parametrisierten Familie zu wählen.
Nachdem wir im zweiten Kapitel den Begriff der “Parametrisierung durch ein Vektorbündel” präzisieren, verfolgen wir die von Karasev, Hubard & Aronov entwickelte Strategie, topologische Kriterien für die Lösbarkeit des parametriserten Nandakumar & Ramana~Rao-Problems in gewissen Fällen zu finden. Den Grenzen unserer topologischen Methoden ist es geschuldet, dass wir uns dabei auf den Fall beschränken, indem m=p eine Primzahl ist.
Das dritte Kapitel der Arbeit gibt einen Überblick über verschiedene bekannte Ergebnisse der Algebraischen Topologie, die wir in den späteren Kapiteln benutzen werden.
Im vierten Kapitel erweitern wir Ergebnisse Jaworowskis über Fadell-Husseini-Indizes gewisser Sphärenbündeln, die mit einer faserweisen Wirkung der zyklischen Gruppe Z/Z_p ausgestattet sind, wobei eine Wirkung der symmetrischen Gruppe S_p an die Stelle der Z/Z_p-Wirkung tritt. Als Nächstes berechnen wir die Indizes (bzgl. S_p-Wirkung) des Faserweisen Konfigurationsraums Fconf(p, E) von p Punkten in einem Vektorbündel E ungeraden Rangs, geben für den Fall geraden Rangs (teils bestmögliche) Schranken an, und berechnen den Index (bzgl. Z/Z_p oder S_p-Wirkung) im Spezialfall, dass E zwei linear unabhängige Schnitte zulässt.
Das fünfte Kapitel behandelt, wie die Ergebnisse unserer Berechnungen zu einer teilweisen Lösung des parametrisierten Nandakumar & Ramana~Rao-Problems führen. Für jedes Paar, bestehend aus einem Vektorbündel E und einer Primzahl p beschreiben wir einen Bereich möglicher Werte von j, für die das parametrisierte Nandakumar & Ramana~Rao-Problem bezüglich dem Tripel (E, p, j) eine Lösung besitzt. Schließlich wenden wir unsere Überlegungen auf den Spezialfall Tautologischer Bündel über Grassmann-Mannigfaltigkeiten an.