dc.contributor.author
Wieder, Frederik
dc.contributor.author
Henk, Martin
dc.contributor.author
Bockmayr, Alexander
dc.date.accessioned
2023-09-01T06:44:05Z
dc.date.available
2023-09-01T06:44:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40645
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40366
dc.description.abstract
Elementary flux modes (EFMs) play a prominent role in the constraint-based analysis of metabolic networks. They correspond to minimal functional units of the metabolic network at steady-state and as such have been studied for almost 30 years. The set of all EFMs in a metabolic network tends to be very large and may have exponential size in the number of reactions. Hence, there is a need to elucidate the structure of this set. Here we focus on geometric properties of EFMs. We analyze the distribution of EFMs in the face lattice of the steady-state flux cone of the metabolic network and show that EFMs in the relative interior of the cone occur only in very special cases. We introduce the concept of degree of an EFM as a measure how elementary it is and study the decomposition of flux vectors and EFMs depending on their degree. Geometric analysis can help to better understand the structure of the set of EFMs, which is important from both the mathematical and the biological viewpoint.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Metabolic networks
en
dc.subject
Elementary flux modes
en
dc.subject
Steady-state flux cone
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
On the geometry of elementary flux modes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
50
dcterms.bibliographicCitation.doi
10.1007/s00285-023-01982-w
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Biology
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
87
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00285-023-01982-w
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-1416