Investigating the role of chiral-induced spin selectivity in the generation of spin correlated radical pairs in a photoexcited donor–chiral bridge–acceptor system is fundamental to exploit it in quantum technologies. This requires a minimal master equation description of both charge separation and recombination through a chiral bridge. To achieve this without adding complexity and entering in the microscopic origin of the phenomenon, we investigate the implications of spin-polarizing reaction operators to the master equation. The explicit inclusion of coherent evolution yields non-trivial behaviors in the charge and spin dynamics of the system. Finally, we apply this master equation to a setup comprising a molecular qubit attached to the donor–bridge–acceptor molecule, enabling qubit initialization, control, and read-out. Promising results are found by simulating this sequence of operations assuming realistic parameters and achievable experimental conditions.