dc.contributor.author
Nowatzky, Yannek
dc.contributor.author
Benner, Philipp
dc.contributor.author
Reinert, Knut
dc.contributor.author
Muth, Thilo
dc.date.accessioned
2023-08-09T12:58:57Z
dc.date.available
2023-08-09T12:58:57Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40402
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-40123
dc.description.abstract
Motivation
Deep learning has moved to the forefront of tandem mass spectrometry-driven proteomics and authentic prediction for peptide fragmentation is more feasible than ever. Still, at this point spectral prediction is mainly used to validate database search results or for confined search spaces. Fully predicted spectral libraries have not yet been efficiently adapted to large search space problems that often occur in metaproteomics or proteogenomics.
Results
In this study, we showcase a workflow that uses Prosit for spectral library predictions on two common metaproteomes and implement an indexing and search algorithm, Mistle, to efficiently identify experimental mass spectra within the library. Hence, the workflow emulates a classic protein sequence database search with protein digestion but builds a searchable index from spectral predictions as an in-between step. We compare Mistle to popular search engines, both on a spectral and database search level, and provide evidence that this approach is more accurate than a database search using MSFragger. Mistle outperforms other spectral library search engines in terms of run time and proves to be extremely memory efficient with a 4- to 22-fold decrease in RAM usage. This makes Mistle universally applicable to large search spaces, e.g. covering comprehensive sequence databases of diverse microbiomes.
Availability and implementation
Mistle is freely available on GitHub at https://github.com/BAMeScience/Mistle.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
metaproteomics
en
dc.subject
deep learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Mistle: bringing spectral library predictions to metaproteomics with an efficient search index
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
btad376
dcterms.bibliographicCitation.doi
10.1093/bioinformatics/btad376
dcterms.bibliographicCitation.journaltitle
Bioinformatics
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
39
dcterms.bibliographicCitation.url
https://doi.org/10.1093/bioinformatics/btad376
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Bioinformatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1367-4811
refubium.resourceType.provider
WoS-Alert