Persister cells are drug-tolerant bacteria capable of surviving antibiotic treatment despite the absence of heritable resistance mechanisms. It is generally thought that persister cells survive antibiotic exposure through the implementation of stress responses and/or energy-sparing strategies. Exposure to DNA gyrase-targeting antibiotics could be particularly detrimental for bacteria that carry prophages integrated in their genomes. Gyrase inhibitors are known to induce prophages to switch from their dormant lysogenic state into the lytic cycle, causing the lysis of their bacterial host. However, the influence of resident prophages on the formation of persister cells has only been recently appreciated. Here, we evaluated the effect of endogenous prophage carriage on the generation of bacterial persistence during Salmonella enterica serovar Typhimurium exposure to both gyrase-targeting antibiotics and other classes of bactericidal antibiotics. Results from the analysis of strain variants harboring different prophage combinations revealed that prophages play a major role in limiting the formation of persister cells during exposure to DNA-damaging antibiotics. In particular, we present evidence that prophage Gifsy-1 (and its encoded lysis proteins) are major factors limiting persister cell formation upon ciprofloxacin exposure. Resident prophages also appear to have a significant impact on the initial drug susceptibility, resulting in an alteration of the characteristic biphasic killing curve of persister cells into a triphasic curve. In contrast, a prophage-free derivative of S. Typhimurium showed no difference in the killing kinetics for β-lactam or aminoglycoside antibiotics. Our study demonstrates that induction of prophages increased the susceptibility toward DNA gyrase inhibitors in S. Typhimurium, suggesting that prophages have the potential for enhancing antibiotic efficacy.