Studies on the penetration of toxicologically or pharmaceutically relevant substances through the skin and, more specifically, through the stratum corneum (s.c.) often rely on the well-established method of tape stripping. Tape stripping involves the removal of skin layers by means of adhesive tape, which is usually followed by quantification of dermally applied substances in these layers. However, the amount of s.c. removed by each individual tape strip is still a matter of scientific debate. While some studies imply that the amount of s.c. adhering to each tape strip decreases with increasing depth into the s.c., others observed a constant removal rate. All these studies rely on the quantification of the amount of s.c. captured on individual or pooled tape strips. Here, we present an approach whereby we measured the amount of s.c. remaining on excised porcine skin in the process of tape stripping. Staining and bloating of the s.c. allowed to measure its thickness and to count individual s.c. layers, respectively. Histologically, we show that the s.c. remaining on the skin decreased linearly as a function of strips taken. We found that each tape strip removes about 0.4 µm of s.c., which corresponds to approximately one cellular layer. With a high coefficient of determination (r2 > 0.95), we were able to linearly correlate the thickness of the remaining s.c., the number of remaining cell layers and the number of tape strips applied. Furthermore, we elaborate on possible reasons for the discrepancies reported in the scientific literature regarding the amount of s.c. removed by each tape strip.