dc.contributor.author
Froyland, Gary
dc.contributor.author
Koltai, Péter
dc.date.accessioned
2023-10-09T07:53:11Z
dc.date.available
2023-10-09T07:53:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39974
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39696
dc.description.abstract
Finite-time coherent sets (FTCSs) are distinguished regions of phase space that resist mixing with the surrounding space for some finite period of time; physical manifestations include eddies and vortices in the ocean and atmosphere, respectively. The boundaries of FTCSs are examples of Lagrangian coherent structures (LCSs). The selection of the time duration over which FTCS and LCS computations are made in practice is crucial to their success. If this time is longer than the lifetime of coherence of individual objects then existing methods will fail to detect the shorter-lived coherence. It is of clear practical interest to determine the full lifetime of coherent objects, but in complicated practical situations, for example a field of ocean eddies with varying lifetimes, this is impossible with existing approaches. Moreover, determining the timing of emergence and destruction of coherent sets is of significant scientific interest. In this work we introduce new constructions to address these issues. The key components are an inflated dynamic Laplace operator and the concept of semi-material FTCSs. We make strong mathematical connections between the inflated dynamic Laplacian and the standard dynamic Laplacian, showing that the latter arises as a limit of the former. The spectrum and eigenfunctions of the inflated dynamic Laplacian directly provide information on the number, lifetimes, and evolution of coherent sets.
en
dc.format.extent
43 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
finite-time coherent sets
en
dc.subject
Lagrangian coherent structures
en
dc.subject
coherent sets
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Detecting the birth and death of finite-time coherent sets
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/cpa.22115
dcterms.bibliographicCitation.journaltitle
Communications on Pure and Applied Mathematics
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.pagestart
3642
dcterms.bibliographicCitation.pageend
3684
dcterms.bibliographicCitation.volume
76
dcterms.bibliographicCitation.url
https://doi.org/10.1002/cpa.22115
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1097-0312