dc.contributor.author
Riedel, Jerome
dc.contributor.author
Meijer, Gerard
dc.contributor.author
Helden, Gert von
dc.contributor.author
Lettow, Maike
dc.contributor.author
Gotze, Michael
dc.contributor.author
Miller, Rebecca L.
dc.contributor.author
Boons, Geert-Jan
dc.contributor.author
Szekeres, Gergo Peter
dc.contributor.author
Pagel, Kevin
dc.contributor.author
Grabarics, Marko
dc.date.accessioned
2023-06-08T08:11:31Z
dc.date.available
2023-06-08T08:11:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39765
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39483
dc.description.abstract
In recent years, glycosaminoglycans (GAGs) have emerged into the focus of biochemical and biomedical research due to their importance in a variety of physiological processes. These molecules show great diversity, which makes their analysis highly challenging. A promising tool for identifying the structural motifs and conformation of shorter GAG chains is cryogenic gas-phase infrared (IR) spectroscopy. In this work, the cryogenic gas-phase IR spectra of mass-selected heparan sulfate (HS) di-, tetra-, and hexasaccharide ions were recorded to extract vibrational features that are characteristic to structural motifs. The data were augmented with chondroitin sulfate (CS) disaccharide spectra to assemble a training library for random forest (RF) classifiers. These were used to discriminate between GAG classes (CS or HS) and different sulfate positions (2-O-, 4-O-, 6-O-, and N-sulfation). With optimized data preprocessing and RF modeling, a prediction accuracy of >97% was achieved for HS tetra- and hexasaccharides based on a training set of only 21 spectra. These results exemplify the importance of combining gas-phase cryogenic IR ion spectroscopy with machine learning to improve the future analytical workflow for GAG sequencing and that of other biomolecules, such as metabolites.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Infrared light
en
dc.subject
Post-translational modification
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Predicting Structural Motifs of Glycosaminoglycans using Cryogenic Infrared Spectroscopy and Random Forest
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/jacs.2c12762
dcterms.bibliographicCitation.journaltitle
Journal of the American Chemical Society
dcterms.bibliographicCitation.number
14
dcterms.bibliographicCitation.pagestart
7859
dcterms.bibliographicCitation.pageend
7868
dcterms.bibliographicCitation.volume
145
dcterms.bibliographicCitation.url
https://doi.org/10.1021/jacs.2c12762
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-5126
refubium.resourceType.provider
WoS-Alert