dc.contributor.author
Pirnay, Niklas
dc.contributor.author
Sweke, Ryan
dc.contributor.author
Eisert, Jens
dc.contributor.author
Seifert, Jean-Pierre
dc.date.accessioned
2023-06-05T12:14:05Z
dc.date.available
2023-06-05T12:14:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39730
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39448
dc.description.abstract
Density modeling is the task of learning an unknown probability density function from samples, and is one of the central problems of unsupervised machine learning. In this work, we show that there exists a density modeling problem for which fault-tolerant quantum computers can offer a superpolynomial advantage over classical learning algorithms, given standard cryptographic assumptions. Along the way, we provide a variety of additional results and insights of potential interest for proving future distribution learning separations between quantum and classical learning algorithms. Specifically, we (a) provide an overview of the relationships between hardness results in supervised learning and distribution learning, and (b) show that any weak pseudorandom function can be used to construct a classically hard density modeling problem. The latter result opens up the possibility of proving quantum-classical separations for density modeling based on weaker assumptions than those necessary for pseudorandom functions.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum computation
en
dc.subject
Quantum information theory
en
dc.subject
Machine learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Superpolynomial quantum-classical separation for density modeling
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
042416
dcterms.bibliographicCitation.doi
10.1103/PhysRevA.107.042416
dcterms.bibliographicCitation.journaltitle
Physical Review A
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
107
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevA.107.042416
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2469-9934
refubium.resourceType.provider
WoS-Alert