dc.contributor.author
Altmann, Klaus
dc.contributor.author
Flatt, Amelie
dc.contributor.author
Hille, Lutz
dc.date.accessioned
2023-05-24T12:15:39Z
dc.date.available
2023-05-24T12:15:39Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39533
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39251
dc.description.abstract
For any two nef line bundles L+:=OX(Δ+) and L−:=OX(Δ−) on a toric variety X represented by lattice polyhedra Δ+ respectively Δ−, we present the universal equivariant extension of L− by L+ under use of the connected components of the set theoretic difference Δ−∖Δ+.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
toric line bundles
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Extensions of toric line bundles
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
3
dcterms.bibliographicCitation.doi
10.1007/s00209-023-03206-9
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
Mathematische Zeitschrift
dcterms.bibliographicCitation.volume
304
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00209-023-03206-9
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-1823
refubium.resourceType.provider
WoS-Alert