dc.contributor.author
Meyer, Johannes Jakob
dc.contributor.author
Mularski, Marian
dc.contributor.author
Gil-Fuster, Elies
dc.contributor.author
Mele, Antonio Anna
dc.contributor.author
Arzani, Francesco
dc.contributor.author
Wilms, Alissa
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2023-05-24T12:09:47Z
dc.date.available
2023-05-24T12:09:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39531
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39249
dc.description.abstract
Variational quantum machine learning is an extensively studied application of near-term quantum computers. The success of variational quantum learning models crucially depends on finding a suitable parametrization of the model that encodes an inductive bias relevant to the learning task. However, precious little is known about guiding principles for the construction of suitable parametrizations. In this work, we holistically explore when and how symmetries of the learning problem can be exploited to construct quantum learning models with outcomes invariant under the symmetry of the learning task. Building on tools from representation theory, we show how a standard gateset can be transformed into an equivariant gateset that respects the symmetries of the problem at hand through a process of gate symmetrization. We benchmark the proposed methods on two toy problems that feature a nontrivial symmetry and observe a substantial increase in generalization performance. As our tools can also be applied in a straightforward way to other variational problems with symmetric structure, we show how equivariant gatesets can be used in variational quantum eigensolvers.
en
dc.format.extent
27 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Artificial neural networks
en
dc.subject
Deep learning
en
dc.subject
Machine learning
en
dc.subject
Quantum computation
en
dc.subject
Quantum gates
en
dc.subject
Quantum information theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Exploiting Symmetry in Variational Quantum Machine Learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
010328
dcterms.bibliographicCitation.doi
10.1103/PRXQuantum.4.010328
dcterms.bibliographicCitation.journaltitle
PRX Quantum
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
4
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PRXQuantum.4.010328
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2691-3399
refubium.resourceType.provider
WoS-Alert