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Variational quantum machine learning is an extensively studied application of near-term quantum
computers. The success of variational quantum learning models crucially depends on finding a suitable
parametrization of the model that encodes an inductive bias relevant to the learning task. However, pre-
cious little is known about guiding principles for the construction of suitable parametrizations. In this
work, we holistically explore when and how symmetries of the learning problem can be exploited to con-
struct quantum learning models with outcomes invariant under the symmetry of the learning task. Building
on tools from representation theory, we show how a standard gateset can be transformed into an equivari-
ant gateset that respects the symmetries of the problem at hand through a process of gate symmetrization.
We benchmark the proposed methods on two toy problems that feature a nontrivial symmetry and observe
a substantial increase in generalization performance. As our tools can also be applied in a straightforward
way to other variational problems with symmetric structure, we show how equivariant gatesets can be
used in variational quantum eigensolvers.
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The advent of quantum devices that come close to out-
performing classical computers in certain computational
tasks [1–3] has sparked a wealth of investigations into the
capabilities of noisy intermediate-scale quantum (NISQ)
devices [4]. These endeavors are aimed at exploiting the
computational power of quantum computers without quan-
tum error correction that make use of relatively short
quantum circuits. A particular emphasis is put on hybrid
quantum classical approaches that use the quantum device
to implement subroutines in otherwise largely classical
algorithms [5].

Important areas of applications intended for these hybrid
approaches include problems in quantum chemistry, clas-
sical combinatorial optimization, and machine learning
[6,7]. Symmetries have always played a very important
role in the analysis of physical systems, due to their fre-
quent admitting of conserved quantities. Combining this
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with Noether’s theorem informs us that conserved quan-
tities correspond to symmetries of the underlying system.
In quantum chemistry, for example, solutions to ground-
state problems or electronic structure calculations have to
respect conserved quantities such as the global particle
number or the parity of the fermion number and hence
admit nontrivial symmetries.

The usefulness of symmetries is not limited to the
domain of physical systems, however, and their role in the
context of classical machine learning must not be under-
stated. Symmetries have been pivotal in the development
of successful models for image recognition that sparked a
revolution in learning with artificial neural networks [8].
More recent breakthroughs, like the development of the
transformer model [9], are also linked to a better under-
standing of the underlying symmetries of the learning
task. Consequently, the rigorous treatment of symmetries
in machine learning has recently culminated in the creation
of the subfield of geometric deep learning [10].

In this work, we explore how symmetries of a learning
task can be exploited to create quantum learning models
whose output is invariant under symmetry transformations
on the level of the data. The fact that classical data have
to be embedded into the Hilbert space of a quantum sys-
tem makes it difficult to directly transfer ideas from the
classical world to the construction of variational quantum
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learning models. As our main contribution, we show how
to embed data in a way that enables us to build invariant
learning models for which we give both a general blueprint
and mathematical tools for their design.

In Sec. II, we exhibit data embeddings that give rise
to meaningful representations of practically relevant data
symmetries on the level of the Hilbert space, both for
discrete and continuous symmetries. The trainable parts
of variational quantum learning models are usually con-
structed using gates from a standard gateset. In Sec. III we
show how the representation on the level of the Hilbert
space can be exploited to symmetrize the generators of
such a gateset to give rise to an equivariant gateset. We
especially detail which pitfalls should be avoided when
constructing an equivariant gateset. In Sec. IV we show
how these building blocks can be combined to construct
variational quantum data reuploading models that make
invariant predictions and thus include a meaningful induc-
tive bias. A visual summary of our approach is given in
Fig. 1.

To elaborate on how our approaches are applied and to
showcase the increase in performance, we conduct a num-
ber of numerical experiments in Sec. V. We consider the
classification of games of tic tac toe as a paradigmatic
learning task with nontrivial symmetry and show a sig-
nificant increase in generalization performance that even
generically holds for random constructions in the equiv-
ariant gateset. We further consider a learning task with
similar symmetry properties that is inspired by a problem
from the automotive industry and which can, as soon as
the quantum computational resources become available,
be scaled up to address the actual task. For this task,
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FIG. 1. A unitary representation of a symmetry group S can
arise from data symmetries when the data points are suitably
encoded or alternatively from physical considerations of a vari-
ational problem. We can use such a representation to replace
gates with their equivariant counterparts and thus symmetrize
generic ansätze used in the construction of learning models and
variational algorithms.

concerned with the classification of the criticality of driv-
ing scenarios for autonomous vehicles, we reach the same
conclusions as for the tic-tac-toe example. We also argue
that the idea of equivariant gatesets itself is not limited to
applications in quantum machine learning. This is why we
additionally provide numerical investigations into ground-
state problems of the transverse-field Ising model, the
Heisenberg model and a toy model based on the longitu-
dinal transverse-field Ising model that exhibits the same
symmetries as the tic-tac-toe problem. For these kinds of
problems, equivariant ansätze usually help, but the bene-
fit is less apparent than in the case of quantum machine
learning models.

There is already a substantial amount of literature on
the application of symmetries in the context of variational
quantum algorithms. Explicit constructions of ansätze and
gadgets for quantum chemistry problems can be found in
Refs. [11–18]. Another approach has been chosen by the
authors of Refs. [19,20] where symmetries were imposed
through classical postprocessing. An approach in the same
direction as that we outline in this work has been proposed
in Ref. [21], where it has been suggested to simply remove
generators that violate the symmetry or fix the parameters
of the gates.

Here, we are reaching the same goal via a distinctly
different route, as we propose to alter the set of gen-
erators used in the construction of the ansatz. Further
works that treat symmetry-enhanced variational methods
are found in Refs. [22–24]. Another possibility outside
of altering the ansatz itself to enforce symmetries is to
enforce them through the optimizer via the use of addi-
tional terms in the cost function that penalize asymmetric
states as in Refs. [25–27]. In a different direction, Mernyei
et al. [28] proposed a quantum model that closely fol-
lows the geometric deep learning blueprint [10] by having
first a symmetry equivariant quantum “layer,” followed
by a symmetry invariant classical “aggregator.” In par-
ticular, they proposed a model for graph-based learning
tasks, so the symmetry they considered is the permutation
(or relabeling) of the graph nodes. Also specifically for
graphs, Verdon et al. [29] included a recipe for building
permutation invariant models inspired by graph convolu-
tional neural networks [10]. Zheng et al. [30] looked at
the construction of group-equivariant ansatz states to learn
quantum states. Glick et al. [31] proposed a construc-
tion of covariant quantum kernels that evaluate data that
already comes with a group structure.

I. PRELIMINARIES

A. Variational quantum algorithms

Variational quantum algorithms [6] are a major research
direction in the study of the capabilities of near-term
quantum devices to solve practically relevant problems. In
these hybrid quantum classical approaches [5], a quantum
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device uses a parametrized quantum circuit (PQC) as an
ansatz to prepare a parametrized quantum state vector
|ψ(θ)〉. After the preparation of the state, measurements
are performed in order to estimate the expectation val-
ues of a set of observables {O1, O2, . . . }. These expec-
tation values are then used to compute a cost function
C(θ , 〈O1〉, 〈O2〉, . . . ) that encodes the problem of inter-
est. Particularly prominent applications are the variational
quantum eigensolver (VQE) where the cost function is
given by the expectation value of a Hamiltonian H whose
ground state is to be approximated and the quantum
approximate optimization algorithm (QAOA) that com-
bines a specific ansatz construction with VQE to approx-
imate solutions to classical optimization problems. As
variational quantum algorithms offer an extremely flexible
paradigm to tackle problems, such algorithms have been
proposed for a wide variety of different problems beyond
that [7].

B. Variational quantum learning models

With the current success of machine learning, espe-
cially neural-network-based deep learning, the interest into
possible gains from applying quantum computers to learn-
ing problems has come into focus, sparking the field
of quantum machine learning. Variational approaches as
outlined above can be used to construct variational quan-
tum learning models (VQLMs); see, e.g., Refs. [32–34].
In such circuit-based models, the ansatz state does not
depend only on variational parameters but also on the input
data, and predictions are encoded in expectation values of
observables

y(x) = 〈ψ(θ , x)|O|ψ(θ , x)〉. (1)

Because of the no-cloning theorem, it is important for the
expressivity of quantum learning models to embed the data
into the quantum circuit multiple times, a process dubbed
data reuploading [35–37]. In the following, we therefore
consider VQLMs where a fixed data-embedding unitary
U(x) is interleaved with parametrized quantum circuits as

|ψ(θ , x)〉 = WL(θ)U(x) · · · W1(θ)U(x)W0(θ) |ψ0〉 . (2)

C. Symmetry groups

Symmetries are commonly captured by groups. A group
S is a set of objects s ∈ S together with a composition rule
“◦”—usually called “multiplication”—so that s1 ◦ s2 ∈ S
for all s1, s2 ∈ S . The multiplication is also required to
be associative, i.e., (s1 ◦ s2) ◦ s3 = s1 ◦ (s2 ◦ s3). Further-
more, there is an identity element e so that e ◦ s = s ◦ e = s
for all s ∈ S and that, for all s ∈ S , there exists a unique
inverse element s−1 so that s ◦ s−1 = s−1 ◦ s = e. A simple
example of a group is Z2 = {0, 1} where the composition
is given by addition modulo 2. If a restriction of S to some
subset is itself a group under the composition rule of S , we
call this subset a subgroup.

The concept of groups also extends to continuous sets in
the form of Lie groups. A real Lie group is a group S that is
also a smooth manifold and the composition rule and inver-
sion are smooth maps. One example of a (noncompact) Lie
group is the set of all invertible linear operators GLn(C).
Lie groups that are a subgroup of GLn(C) and can hence be
expressed in terms of matrices are called matrix Lie groups
and we focus on these in the following. An example of a
matrix Lie group are the unitary matrices acting on C

n,
denoted U(n).

Lie groups are intimately related to Lie algebras that can
be seen as the generators of elements of the Lie group.
For a matrix Lie group S , we can define the associated
algebra as

s = Lie(S) = {G : exp(tG) ∈ S for all t ∈ R}. (3)

This is motivated by the fact that, for two group elements
s1, s2 ∈ S , we can understand the group multiplication
on the level of the Lie algebra via the Baker-Campbell-
Hausdorff formula

s1s2 = eG1eG2 = eG1+G2+[G1,G2]/2+···. (4)

For s1 and s2 close to the identity element, the norms of G1
and G2 are small, in which case their commutator gives the
first correction. It is actually part of the formal definition
of a Lie algebra and is called the Lie bracket.

A representation of a group is a map U : S →
Aut(V), s �→ Us that is compatible with the composition
rule: Us1◦s2 = Us1Us2 . If the space V is equipped with a
scalar product and the linear maps Us are unitary, we call
this a unitary representation.

II. SYMMETRIES INDUCED BY DATA
EMBEDDINGS

Symmetries play an important role all across physics
and problems that are of interest in near-term applications
are no different in this respect. A symmetry group S acts on
an n-qubit Hilbert space H through a unitary representation
Us for s ∈ S .

In ground-state problems—as they are encountered in
the variational quantum eigensolver [38]—symmetries are
usually derived from physical considerations. An example
of such a symmetry, which is encountered for example in
the Heisenberg model, is that the energy of a state does
not change if all spins are flipped, i.e., when the operator
X ⊗n is applied. This can be understood as a representa-
tion of the symmetry group Z2. Further symmetries include
joint unitary transformations of all spins [SU(2)] or trans-
lation symmetry (Zn). Such symmetries have already been
extensively studied in the context of VQE, with a partic-
ular focus towards building symmetry-preserving ansätze
for quantum chemistry applications [11–18].
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But ground-state problems are not the only problems of
interest in near-term applications that can have a symmet-
ric structure. Indeed, many learning problems encountered
in the context of quantum machine learning also have
some symmetry: a prototypical example is the labeling of
images. Even if we move all the pixels of a cat photo to the
right or rotate it, the photo still depicts a cat. More for-
mally, consider a task where a prediction y ∈ Y should
be associated with data points x ∈ X . We say that the
prediction is invariant under a symmetry group S with
representation Vs : S → Aut(X ) if

y(Vs[x]) = y(x) for all x ∈ X and s ∈ S . (5)

Notions like this have recently sparked the subfield of geo-
metric deep learning [10] that abstractly reasons about
these symmetries and their implementation in learning
models, particularly in artificial neural networks. The geo-
metric reasoning also elucidates the early success of con-
volutional neural networks [8] that use building blocks
that respect the translation symmetry present in typical
image classification tasks and the success of transformer
models [9]. It is also intuitive to expect that building
symmetry-invariant models comes with advantages: by
definition, a symmetry-invariant model does not see any
difference between data points that are related by a symme-
try transformation, which effectively reduces the number
of possible predictions the learning model can make. Such
a model has lower complexity and is thus expected to be
easier to train. Furthermore, these models only produce
predictions that respect the symmetry already present in
the learning problem and are thus expected to generalize
better to unseen data.

In the following, we show how to construct quantum cir-
cuits that embed classical data in a way that gives rise to a

meaningful unitary representation of the symmetry on the
level of the Hilbert space that we call an induced represen-
tation. These embeddings are then used as building blocks
in the construction of symmetry-invariant data reuploading
models.

A. Introductory example

We first consider an introductory example that is given
in Fig. 2. Assume that we have data points x = (x1, x2) ∈
R

2 and the prediction—for example, a classification—has
the symmetries

y(x1, x2) = y(x2, x1) = y(−x1, −x2), (6)

which correspond to an exchange of the coordinates and
a simultaneous sign flip. The associated symmetry group,
famously known as Klein’s four group, is given by

Z2 × Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)} (7)

with the group operation being entrywise addition modulo
2. In this abstract definition of the symmetry group, the first
component could be understood as the Boolean answer to
the question “do we exchange?” The second component
could be understood as the Boolean answer to the question
“do we flip?” The representation on the level of the data is
given by

V(0,0) =
[

1 0
0 1

]
, V(1,0) =

[
0 1
1 0

]
, (8)

V(0,1) =
[−1 0

0 −1

]
, V(1,1) =

[
0 −1

−1 0

]
. (9)

If we use an embedding unitary

U(x1, x2) = RZ(x1)⊗ RZ(x2) (10)

symmetric problem + embedding Induced representation

FIG. 2. Simple example of a classification problem with two features (x1, x2) that has a Z2 × Z2 symmetry generated by a flip about
the axis x1 = x2 (green) and inversion about the center (red). Combining both operations yields a flip about the axis x1 = −x2 (purple).
Together with the simple qubitwise embedding of the coordinates, these induce a representation of Z2 × Z2 generated by a SWAP
operation of the two qubits and a simultaneous application of Pauli X on the two qubits.
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then the symmetry operations can be represented on the
level of the Hilbert space as

U(x2, x1) = RZ(x2)⊗ RZ(x1)

= SWAP U(x1, x2) SWAP, (11)

U(−x1, −x2) = RZ(−x1)⊗ RZ(−x2)

= (X ⊗ X )U(x1, x2)(X ⊗ X ), (12)

where we have used the fact that XZX = −Z. Note that
we could have equivalently used (Y ⊗ Y) in the above
example, so the operations are not necessarily unique.

In the example, we see that symmetry operations on the
data map directly to unitary transformations of the underly-
ing Hilbert space. We can use this intuition to formalize the
concept of an induced representation and to define what it
means for an embedding to be equivariant [39].

Definition 1 (Equivariant embedding): We call a data
encoding unitary U(x) equivariant with respect to the data
symmetry Vs if

U(Vs[x]) = UsU(x)U†
s (13)

for a unitary representation Us of S . The representation Us
is the induced representation of the embedding U(x).

The representation induced by our above example is
then

U(0,0) = I ⊗ I, U(1,0) = SWAP, (14)

U(0,1) = X ⊗ X , U(1,1) = SWAP(X ⊗ X ). (15)

In the following, we show how we can construct data
encodings that are equivariant with respect to the most
important symmetry classes encountered in real-world
learning tasks.

B. Permutation symmetries

Most data encountered in contemporary learning tasks,
like images or time series data, have a discrete structure.
Symmetry transformations of the data, like translating or
rotating an image or translating a time series, can thus be
captured by a permutation of the different data features.
This means that in many relevant scenarios with symmetry,
the symmetry group will be a subgroup of the permuta-
tion group (or symmetric group) Sd of the d different data
features x = (x1, . . . , xd).

The elements of the symmetric groups are all possible
reshufflings σ of the data features

σ(x1, x2, . . . , xd) = (xσ(1), xσ(2), . . . , xσ(d)). (16)

Every permutation can be constructed by concatenating
transpositions, which are exchanges of two data features

at a time. We write a transposition as τ such that, for
all σ ∈ Sd, we have σ = τm · · · τ2τ1 for some transposi-
tions {τi}. Note that a product of transpositions is usually
considered to be implemented from right to left.

In the previous section, we already saw how to construct
a data encoding that is equivariant with respect to the per-
mutation of two elements, and the construction directly
generalizes to higher dimensions, needing d qubits for
d-dimensional data. We complement this with a related
construction that allows using approximately log d qubits
but still retains equivariance. The natural construction is
to embed every data feature via a Pauli rotation on a sep-
arate qubit; the choice of the generator is not relevant, so
we settle for Z, to get

U(x1, . . . , xd) = RZ(x1)⊗ · · · ⊗ RZ(xd), (17)

where the gate RZ(xi) acts on the ith qubit. This encoding
is obviously equivariant with respect to the permutations
of the qubits and induces a representation of Sd that is
given by

Uσ = Uτm···τ2τ1 = SWAPτm · · · SWAPτ2 SWAPτ1 , (18)

where SWAPτ swaps the two qubits corresponding to the
features swapped by τ . This embedding actually allows
us to go even further than the permutation group and also
equivariantly embed sign flips of the ith coordinate by con-
jugating with Pauli X on the ith qubit, thus generalizing to
Sd � Z

d
2 [40].

With this strategy, we need as many qubits as data fea-
tures. A natural question is whether it is possible to do
better, namely, if we could find a different encoding gate
that embedded d features in less than d qubits and still be
equivariant with respect to the permutation group. If we
want to add another Pauli word as a generator to the above
set of local Z operators, we are limited by the fact that this
generator has to be invariant under all SWAP operations
between qubits because these should, by definition, only
exchange the associated coordinates and not the newly
added one. This means that the only operator we can
add is Z⊗d, yielding one additional data feature we could
in principle encode with this strategy. In this case, the
representation for exchanging the ith coordinate with the
(d + 1)th coordinate is a multi-controlled-NOT gate where
the ith qubit controls a simultaneous application of X ⊗d−1

on the rest of the qubits.
Note that we could in principle employ a different set

of mutually commuting Pauli words as any set of indepen-
dent, mutually commuting Pauli words are interchangeable
via Clifford gates [41]. One example would be the set of
generators {Z ⊗ I, I ⊗ Z, Z ⊗ Z} that could equivalently be
replaced by {X ⊗ X , Y ⊗ Y, Z ⊗ Z}, which would consti-
tute a more “balanced” encoding strategy as the opera-
tors are of similar weight. For this set of operators, the
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permutations are generated by the transpositions

τ12 ↔ HXY ⊗ HXY, (19)

τ23 ↔ HYZ ⊗ HYZ , (20)

τ31 ↔ HZX ⊗ HZX , (21)

where HAB is a generalization of the Hadamard operator
H = HZX given by HAB = exp(−iπ(A + B)/2

√
2).

The encoding based on local Z rotations is very inti-
mately related to the instantaneous quantum polynomial
(IQP) encoding proposed by Havlíček et al. [42]. We can
use their inspiration to also include higher monomials of
the data features like, for example, ξ = x1x4. If we embed
such a monomial with a generator Z1Z4, where Zi is a local
Z acting on the ith qubit, then we see that a permutation of
the features can be realized by a permutation of the qubits.
An equivariant embedding of the data is then achieved
by simultaneously embedding all possible permutations of
monomial like x1x2, x1x3, x2x3, and so on using the opera-
tors Z1Z2, Z1Z3, Z2Z3, etc. The number of terms needed for
this construction grows rather quickly because all possible
permutations have to be considered. On the other hand, this
means that we can expect to have to embed fewer terms
if we only wish to realize a subgroup of the permutation
group. If we consider only translations that map xixj to
xi+1xj +1, we only need to embed all possible translations
of the monomial that is linear in the number of features.

While the above strategy for embedding data is straight-
forward to implement, we can in principle embed expo-
nentially many data features in an equivariant way. One
strategy to do so is to assign every state of the com-
putational basis – understood as the collection of all |k〉
identified by the binary representation of the integer k – a
generator

basis as the collection of all identified by the binary
representation of the integer a generator

Gk = |k〉〈k|. (22)

This generates unitaries Rk(xk) = exp(−ixk|k〉〈k|) that only
put a phase on the amplitudes of the kth computational
basis state. The transposition of features k and l is then
easily seen to be achieved by

τkl ↔ |k〉〈l| + |l〉〈k| +
∑
j �=k,l

|j 〉〈j |, (23)

which induces a representation of the permutation group
for a number of data features up to 2n. However, contrary to
the simple Z rotations in the example above, these rotations
are very difficult to implement, as they mostly correspond
to operations controlled on nearly all qubits. Furthermore,
as we will see in Sec. III, if all of the available basis states
are used, only trivial operations will respect the symmetry
of the system.

The above example motivates the claim that the con-
struction of equivariant embeddings should be possible
with relatively few qubits, but at the cost of very com-
plicated gates that need to be implemented. This reduces
the practicality of such an approach, especially in the
NISQ era. The other extreme is the 1-local embedding
proposed at the beginning of this section, which essen-
tially only allows us to embed as many data features as
there are qubits but which can be implemented very easily.
It is therefore an interesting direction for future research
what kind of embeddings can be defined that interpolate
between these two regimes and allow us to embed more
data features than the 1-local embedding while still being
sufficiently implementable.

C. Continuous symmetries

While many cases of practical interest display discrete
symmetries, we need not constrain ourselves to this case.
Especially when looking at possible applications in the
natural sciences, we can also encounter continuous sym-
metries, if, for example, rotating spatial data points around
a certain axis do not alter predictions. The framework for
dealing with continuous symmetries is given by Lie groups
that are continuous groups with a differentiable structure.

Representation theory tells us that any compact Lie
group can be expressed as a subgroup of a suitably large
unitary group [43], and as any unitary group can be embed-
ded in a larger special unitary group, every Lie group
can be represented on a suitably large quantum system.
However, it is not a priori clear which Lie groups admit
embeddings that induce a faithful unitary representation.
We show how we can construct an embedding that is
equivariant with respect to the special orthogonal group in
three dimensions, SO(3), and show how we can extend this
to the full orthogonal group O(3). We then outline how the
general task can be understood mathematically.

1. SO(3) and O(3)

The group SO(3) is made of all possible rotations of a
sphere centered at the origin. For elements of the special
orthogonal group, we use lowercase letters to distinguish
them from their quantum counterparts. Any element r ∈
SO(3) can be constructed by successively applying one of
the three canonical rotations about the axes of the coordi-
nate system that we denote as rx(α), ry(α), and rz(α). In
the following, we use the parametrization in terms of the
Euler angles given by

r(ψ , θ ,φ) = rz(ψ)rx(θ)rz(φ). (24)

We now define an equivariant embedding of a data point
x ∈ R

3 as

U(x) = e−i(x1X +x2Y+x3Z)/2 = e−i〈x,σ 〉/2, (25)
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where we have defined the vector of Pauli operators
σ = (X , Y, Z). We can now exploit that this is essentially
a mapping from data points to the Bloch sphere, of which
we know that conjugation with a Pauli rotation generates
the associated rotation of the Bloch sphere to obtain the
induced representation. We only need

〈rx(α)x, σ 〉 = 〈x, rx(−α)σ 〉
= RX (−α)〈x, σ 〉RX (α), (26)

〈rz(α)x, σ 〉 = RZ(−α)〈x, σ 〉RZ(α), (27)

to deduce that

U(r(ψ , θ ,φ)x) = e−i〈x,r(−φ,−θ ,−ψ)σ 〉/2

= e−i〈x,rz(−φ)rx(−θ)rz(−ψ)σ 〉/2

= RZ(−ψ)RX (−θ)RZ(−φ)e−i〈x,σ 〉/2

× RZ(φ)RX (θ)RZ(ψ). (28)

At this point, we recall that there is a parametrization for
arbitrary unitaries U ∈ SU(2), also in terms of three angles
U(ψ , θ ,φ) = RZ(ψ)RX (θ)RZ(φ). Using this, we arrive at
the desired induced representation

U(r(ψ , θ ,φ)x) = U(−ψ , −θ , −φ)U(x)U†(−ψ , −θ , −φ).
(29)

The full group of all orthogonal (i.e., length-preserving)
transformations on R

d, O(3), is made of not only rotations
but also reflections about any plane that passes through
the origin. Luckily, reflections about different planes can
be related by the rotation that maps the planes to one
another. This means that one fixed reflection, together with
the three canonical rotations, is enough to span the whole
group O(3). We pick the plane perpendicular to the vec-
tor (1, 1, 1), which realizes an inflection about the origin
x �→ −x. As we have seen that we have already exhausted
SU(2) to represent SO(3), this cannot be possible using
an embedding with only a single qubit. However, we can
actually straightforwardly realize this inflection if we add
an additional qubit and use the embedding

U(x) = e−i(x1X +x2Y+x3Z)/2 ⊗X . (30)

The rotations of SO(3) are embedded in the same way as
before on the first qubit, but now the inflection can also be
realized as

U(−x) = e−i(−x1X −x2Y−x3Z)/2 ⊗X

= e−i(x1X +x2Y+x3Z)/2 ⊗−X

= (I ⊗ Z)e−i(x1X +x2Y+x3Z)/2 ⊗X (I ⊗ Z)

= (I ⊗ Z)U(x)(I ⊗ Z). (31)

In this way, we can generate the entire group O(3).

2. The general case

We have found an encoding that is equivariant with
respect to SO(3) transformations, but the immediate ques-
tion arising from this construction is if it can be generalized
to arbitrary Lie groups acting on the data. To this end,
we mathematically formalize the process that leads to an
equivariant embedding. Note that it is required that the
symmetry S must have nontrivial finite-dimensional uni-
tary representations, which rules out interesting groups like
SO(3, 1) as they are not compact groups.

We assume that the embedding of the data is of the form

U(x) = e−iE(x), (32)

which means that we effectively embed the data into the
Lie algebra of the quantum system su(2n). We further
assume that the map from the data to the Lie algebra
E : R

d → su(2n) is linear. We model the symmetry trans-
formation on the level of the data as a representation of
the symmetry Lie group S given by Vs : R

d → R
d. Our

aim is to find a map Ws : su(2n) → su(2n), such that the
following diagram commutes:

R
d su(2n)

R
d su(2n)

E

Vs Ws

E

Here, Ws is a transformation that implements the symmetry
transformation on the level of the Lie algebra in an equiv-
ariant way. This means that it needs to be a conjugation by
a unitary

Ws[X ] = UsXU†
s (33)

for some Us ∈ SU(2n) that represents the symmetry group
S acting on the data. The above is nothing but the adjoint
action of Us, which if Us = eH , is generated by the adjoint
action on the level of the Lie algebra

UsXU†
s = AdUs[X ] = eadH [X ], (34)

where adH [X ] = [H , X ]. Looking back to the data space,
we can use the fact that Vs is a matrix representation of
a Lie group and that we can write Vs = eG for some ele-
ment of the Lie algebra of S , G ∈ s. Making the diagram
commute then enforces

EeG != eadHE , (35)

which can be quickly verified to be the case if

EG = adH E . (36)

In other words, this means that, to construct an equivariant
embedding for a given Lie group representation acting on

010328-7



JOHANNES JAKOB MEYER et al. PRX QUANTUM 4, 010328 (2023)

the data, we need to find a subspace of su(2n)—which is
then the image of E—such that the restriction of the adjoint
representation of su(2n) to this subspace is identical to the
representation of the symmetry Lie algebra s acting on the
data, G.

This elucidates why we are able to construct an embed-
ding equivariant with respect to SO(3). It is because the
fundamental representation of the Lie algebra so(3) that
acts on the data is equal to the adjoint representation of
su(2). Additional to this, we can also see that there always
exists a trivial embedding E0[X ] = 0 that induces a trivial
representation of the Lie algebra. From the above reason-
ing, we also see that it is not enough to find a sub-Lie
algebra isomorphic to the one acting on the data; we really
have to make sure that there is an appropriate subrepre-
sentation of the adjoint representation of su(2n) identical
to the representation of s on the data space. As we think
that the realization of embeddings equivariant with respect
to symmetries more exotic than O(3) is a topic of limited
interest, we leave the classification of equivariant embed-
dings that can be realized in this setup as a topic of further
investigation.

III. GATE SYMMETRIZATION

As we have seen above, symmetries arise naturally
in variational quantum learning models if an equivariant
embedding is used. In these applications, it is paramount
to construct the trainable parts of the model in a way that
encodes an inductive bias suitable to the problem at hand.
The problem we face is that the knowledge of the relation
between parametrized quantum circuits and the associated
inductive bias is not really understood, leaving us with
precariously little to inform our construction of learning
models. Symmetries provide a first avenue to the construc-
tion of better quantum learning models as they allow us
to include knowledge about the underlying data into the
model in a meaningful way. They furthermore allow us to
reduce the complexity of the ansatz as measured by the
number of free parameters and thus also save resources.
The same holds for other variational applications, e.g., in
the search for ground states. There, the goal is not a bet-
ter generalization capability but a better expressivity in the
relevant parts of the Hilbert space.

In this section, we explain how we can use elemen-
tary group theory to construct an equivariant gateset from
a standard gateset used in ansatz constructions, where,
as we will make formal below, we define equivariant as
commuting with the symmetry representation. This allows
us to take an existing ansatz and make it equivariant by
replacing every gate by its equivariant counterpart. We also
explore why this approach has its advantages but is no
panacea as there are several pitfalls to avoid. This some-
times makes it advisable not to build equivariance with

respect to the full symmetry group into the model but to
only consider subgroups thereof.

A. Equivariant gatesets

We focus on gates generated by a fixed generator G as

RG(θ) = exp(−iθG), (37)

as they are usually encountered in ansatz constructions for
variational approaches. When constructing an ansatz, gates
are picked with generators from a fixed gateset G ∈ G.

We call a gate equivariant with respect to the symme-
try embodied by a unitary representation Us of s ∈ S if
the order of applying the symmetry operation and the gate
itself does not matter, so that

[RG(θ), Us] = 0 for all θ ∈ R, s ∈ S . (38)

This can only be the case if the generator itself commutes
with the representation that is captured by the following
proposition.

Proposition 1 (Commuting generators): For a given
gate RG, we have

[RG(θ), Us] = 0 for all θ ∈ R, s ∈ S , (39)

if and only if [G, Us] = 0 for all s ∈ S .

Proof. First, we show that the condition is necessary. For
this, consider the expansion of RG[θ ] to first order

0 = [RG(θ), Us]

= [I − iθG + O(θ2), Us]

= iθ [G, Us] + O(θ2) (40)

⇐⇒ 0 = [G, Us], (41)

as this relation also needs to be valid for infinitesimally
small θ . The condition is obviously sufficient as [G, Us] =
0 implies that all powers of G and hence the full exponen-
tial commutes with Us. �

Luckily for us, there is a straightforward way to ensure
that a generator does commute with a given representa-
tion—we can make use of the twirling formula.

Proposition 2 (Twirling formula [44]): Let Us be a
unitary representation of S . Then,

TU[X ] = 1
|S|

∑
s∈S

UsXU†
s (42)

defines a projector onto the set of operators commuting
with all elements of the representation, i.e., [TU[X ], Us] =
0 for all X and s ∈ S .
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The same holds for Lie groups if we replace the uniform
average with an integration over the Haar measure μ,

TU[X ] =
∫

dμ(s)UsXU†
s . (43)

We use this approach to associate with any gateset G an
equivariant gateset

TU[G] = {TU[G] | G ∈ G}. (44)

Note that this approach also directly extends to gates that
are not parametrized, as these gates can either be directly
symmetrized via the twirling formula or they can be writ-
ten as a parametrized gate with fixed evolution angle as in
Eq. (37).

B. Ansatz symmetrization

We can now use the aforementioned gate symmetriza-
tion technique to convert a complete ansatz (or trainable
block) to an equivariant ansatz (or equivariant trainable
block) by replacing the ansatz’s gateset with its equivari-
ant counterpart. The computation of the equivariant gate-
set can for practical purposes usually be done efficiently
beforehand.

To make this more palpable, let us return to our example
with an exchange symmetry on two qubits. Assume that an
ansatz is made up of local rotation gates generated by the
Pauli operators, {X , Y, Z}, and entangling gates generated
by a ZZ interaction, all of which we consider as trainable.
In this case, the gateset is

G = {X1, Y1, Z1, X2, Y2, Z2, Z1Z2}, (45)

where the index identifies the qubit the Pauli is acting on.
The RZZ gate already commutes with the SWAP operation,
which means that we can focus on the local operations
only.

In our example, the symmetry group is Z2 × Z2, where
the symmetries are generated by SWAP (exchange ↔)
and X ⊗ X = X1X2 (sign flip ±). We first consider the
symmetrization over the two subgroups only to synergize
afterwards.

The generator Z1Z2 already commutes with the SWAP
operations and thus stays invariant under symmetriza-
tion. If we apply the symmetrization with respect to the
exchange symmetry to X1 = X ⊗ I, we obtain

TU↔[X1] = TU↔[X ⊗ I]

= 1
2 [X ⊗ I + SWAP(X ⊗ I)SWAP]

= 1
2 [X ⊗ I + I ⊗ X ]

= 1
2 [X1 + X2]

= TU↔[X2]. (46)

The symmetrization proceeds analogously for the other
operators. We see that X1 and X2 map to the same operator
upon symmetrization—hence, the symmetrized gateset has
a lower cardinality. This means that, as expected, the sub-
space of symmetry-preserving unitaries is smaller than the
full space of unitaries and that upon symmetrization, we
reduce the number of parameters, and hence the complex-
ity, of the ansatz. The gateset equivariant with respect to
the exchange symmetry is then given by symmetric entan-
gling gates and simultaneous Pauli rotations on the two
qubits that share the same angle,

G↔ =
{

X1 + X2

2
,

Y1 + Y2

2
,

Z1 + Z2

2
, Z1Z2

}
. (47)

Now, let us look at the sign flip symmetry. Again, Z1Z2
already commutes with X1X2 and stays invariant under
symmetrization. The situation is again different for the
local gates. It is quite straightforward that X1 and X2
commute with X1X2, but this is not true for the other
gates as

TU±[Y1] = TU±[Y ⊗ I]

= 1
2 [Y ⊗ I + (X ⊗ X )(Y ⊗ I)(X ⊗ X )]

= 1
2 [Y ⊗ I − Y ⊗ I]

= 0, (48)

where we have used the fact that XYX = −Y. The cal-
culation goes analogously for Y2 and also for Z1 and Z2
because XZX = −Z. This means that the sign flip equivari-
ant gateset looks rather different than that for the exchange
symmetry, as in this case we are only allowed local Pauli-X
rotations

G± = {X1, X2, Z1Z2}. (49)

Because of the commuting nature of the group, we can
obtain the fully equivariant gateset by applying either sym-
metrization procedure to the other gateset, which yields

G↔,± =
{

X1 + X2

2
, Z1Z2

}
. (50)

We see that taking into account the full symmetry greatly
reduces the amount of available operations, but which
comes at a cost of reduced expressivity as we will also
detail further in the next section.

C. Pitfalls to avoid

Making an ansatz equivariant through symmetrization
can bring considerable advantages but is by no means a
panacea. There are important considerations and a series
of pitfalls that one should be aware of.
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First and foremost, there is always a trade-off between
the gain in equivariance and therefore specialization to the
relevant subspace and the reduction in expressivity of the
ansatz. This is the point where quantum machine learn-
ing and ground-state problems arguably differ the most:
in machine learning applications, maximal expressivity is
almost always a bad thing, as it leads to overfitting and
therefore bad generalization performance. Depending on
the amount of available data and the specifics of the learn-
ing model, the regime of overfitting can also be reached
relatively quickly. In this case, equivariant models offer a
clear advantage as they not only reduce the expressivity
but they do so in a way that ensures that generaliza-
tion improves. For the preparation of ground states with
a given symmetry, the picture looks somewhat different.
In this case, there exists no phenomenon of overfitting
per se, as a lower energy is preferred even if the pre-
pared state does not have the same symmetry as the ground
state.

We can conclude that the trade-off between expressiv-
ity and equivariance should always be kept in mind. To
fine-tune this trade-off, it is also advisable to only realize
a subset of all existing symmetries of the problem. In our
example above, one could, for example, opt to only respect
the exchange symmetry of the problem. Another way to
fine-tune expressivity of the model is by including a lim-
ited number of explicitly symmetry-breaking gates, as was
argued in, e.g., Ref. [24]. This can be especially advisable
if we do not know the symmetry sector the ground state is
in, so that we have to have the ability to change the sector,
which is impossible with purely equivariant circuits.

Complementary to the trade-off between the gain in
equivariance and the decrease in expressivity, there is an
accompanying change of the loss landscape that has to
be taken into account. It is known that the loss land-
scapes of variational quantum algorithms are typically
challenging [45] and can contain exponentially many poor
local minima [46,47]. The picture changes when the quan-
tum circuits become sufficiently deep to reach the over-
parametrization regime where the number of free param-
eters is larger than the dimension of the relevant subspace
of the Hilbert space [48,49], in which case all local optima
become global. It is suggested in Ref. [47] that enforc-
ing symmetries could make reaching this regime easier
and could contribute to more favorable optimization land-
scapes. It is, however, too early to tell if there are no
additional roadblocks that could arise when enforcing sym-
metries, as in quantum chemistry symmetry breaking was
often found to be helpful for optimization [24]. We con-
sider the analysis of the impact of symmetrization on the
loss landscape of learning models to be an important topic
of further research.

During the symmetrization process itself, there are fur-
ther pitfalls to avoid: first, we have already seen that the

symmetrization procedure can trivialize certain generators.
One example is the representation of Z2 given by U0 = I

and U1 = X . We can express every single-qubit unitary
as a decomposition V = RZ(θ1)RY(θ2)RZ(θ3) that corre-
sponds to using the gateset G = {Y, Z}. However, nei-
ther of these generators is equivariant with respect to
this representation, i.e., TU[Y] = TU[Z] = 0, leaving us
with no gates, even though we started from a universal
parametrization. This is in contrast to the fact that we
have a set of unitaries compatible with the symmetries
that is generated as RX (θ). If we had chosen, for exam-
ple, V = RX (θ1)RY(θ2)RZ(θ3), the trivialization would not
have occurred.

Second, depending on the gates that are used to con-
struct the ansatz, it can lose universality. This can happen
if the gates involved do not generate the full set of uni-
taries compatible with the symmetry. In the context of
quantum chemistry and fermi-to-qubit mappings, 3-local
unitaries are necessary to generate all possible symmetry-
preserving transformations [15,50]. If one would naively
symmetrize an ansatz built from the customary single- and
two-qubit gates, one would lose universality. In Ref. [51]
it was even shown that no set of symmetric local gates
can achieve universality under global continuous symme-
tries like U(1) or SU(2). However, if we only consider
states within a specific symmetry sector, as is customary
in ground-state search problems, this no-go theorem does
not hold anymore and universality may still be achieved
[52]. The crucial point is that in a fixed symmetry sector,
one can generate every unitary up to irrelevant phases—but
these phases become relevant when considering more than
one symmetry sector. In the case of reuploading models, it
is important to note that the data embedding unitaries U(x)
are neither required nor expected to commute with the
symmetry operations. In learning models, the symmetry
of the underlying state is therefore already broken by the
embedding of the classical data and such no-go theorems
do not apply.

Third, the circuit depth could increase dramatically
under symmetrization. This would happen when the sym-
metry induces interactions that are nonlocal with respect
to the underlying hardware and that have to be realized by
extensive SWAP chains.

We also want to note that making the ansatz equivari-
ant is not the only way to make use of symmetries. One
way to do so is to use penalty terms, which are additional
parts of the cost function that increase the cost of states that
have low symmetry [26,27,53]. This is comparable to the
use of regularization terms in classical machine learning.
Penalty terms can be constructed for arbitrary symmetry
representations and have the charm that they act through
the optimizer instead of the ansatz, which means that they
can be generically included to partially alleviate problems
with uninformed ansätze.
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IV. INVARIANT REUPLOADING MODELS

In this section, we want to summarize the construction
of invariant reuploading models. We repeat the definition
of a generic data reuploading model in our sense. We
prepare an ansatz state vector consisting of repeated appli-
cations of trainable blocks {Wi(θ)} and a data-encoding
unitary U(x) as

|ψ(θ , x)〉 = WL(θ)U(x) · · · W1(θ)U(x)W0(θ) |ψ0〉 . (51)

A prediction is then obtained from the expectation value

y(x) = 〈ψ(θ , x)|O|ψ(θ , x)〉 (52)

of an observable. We wish to construct the quantum learn-
ing model in a way that the prediction is invariant under
the action of a symmetry group S acting through a repre-
sentation Vs for s ∈ S in the sense that

y(Vs[x]) = y(x) for all x, s ∈ S . (53)

As we have argued in Sec. II, we can do so for quantum
learning models if the data embedding U(x) is equivariant
with respect to the symmetry in the sense that it induces
a unitary representation of the symmetry group on the
Hilbert space according to

U(Vs[x]) = UsU(x)U†
s for all s ∈ S . (54)

If the data embedding is not equivariant, we have little
hope to build invariant quantum learning models as the
symmetry is not meaningfully represented on the level of
the Hilbert space. Under an equivariant embedding, the
parts of the reuploading model transform as

U(Vs[x])Wi(θ)U(Vs[x]) = UsU(x)U†
s Wi(θ)UsU(x)U†

s .
(55)

We can make this construction equivariant by enforcing
that the trainable block Wi(θ) is equivariant with respect
to the unitary representation Us of S , mathematically
formulated as

[Wi(θ), Us] = 0 for all θ , s ∈ S . (56)

As argued in Sec. III, the representation Us gives us a direct
recipe to enforce equivariance of the trainable blocks. This
is because the twirling formula

TU[X ] = 1
|S|

∑
s∈S

UsXU†
s (57)

is a projector onto all operators that commute with the sym-
metry representation (a projection onto the commutant)
and are thus equivariant. We use the fact that ansätze are

constructed from parametrized gates with generators from
a gateset G to define an equivariant gateset TU[G], which
consists of the twirled generators of the standard gate-
set. The equivariant gateset now contains building blocks
that can be freely combined to construct equivariant train-
able blocks. Combining data embeddings equivariant with
respect to the data symmetry with trainable blocks that are
equivariant with respect to the induced symmetry on the
Hilbert space gives rise to an equivariant circuit

U(θ , Vs[x]) = UsU(θ , x)U†
s for all θ , x, s ∈ S . (58)

We have so far shown how to construct equivariant cir-
cuits. To reach invariance of the final prediction, we also
need an invariant initial state vector

Us |ψ0〉 = |ψ0〉 for all s ∈ S . (59)

As Us = U†
s−1 , this equivalently implies that

U†
s |ψ0〉 = |ψ0〉 for all s ∈ S . (60)

If we now apply an equivariant circuit to an invariant
initial state, we obtain an equivariant ansatz

|ψ(θ , Vs[x])〉 = U(θ , Vs[x]) |ψ0〉
= UsU(θ , x)U†

s |ψ0〉
= UsU(θ , x) |ψ0〉
= Us |ψ(θ , x)〉 for all θ , x, s ∈ S . (61)

Finally, if we combine an equivariant ansatz with an
invariant observable

UsOU†
s = O for all s ∈ S , (62)

we obtain an invariant reuploading model

y(Vs[x]) = 〈ψ(θ , Vs[x])|O|ψ(θ , Vs[x])〉
= 〈ψ(θ , x)|U†

s OUs|ψ(θ , x)〉
= 〈ψ(θ , x)|O|ψ(θ , x)〉
= y(x) for all θ , x, s ∈ S . (63)

Note that the conditions for invariance of the observable
in Eq. (62) and the condition for the equivariance of the
trainable blocks in Eq. (56) are actually the same if spelled
out. The reason for this apparent contradiction is that both
objects are operators, but they do different things: the train-
able block performs a transformation of states, but the
initial state and the final observable act like objects that are
transformed. The picture becomes more clear if we look
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at the operations in terms of their action on density matri-
ces, i.e., if we understand them as quantum channels. Then,
equivariance of a trainable block manifests as

Wi(θ)UsρU†
s Wi(θ)

† = UsWi(θ)ρWi(θ)
†U†

s , (64)

whereas invariance of an observable is still realized as in
Eq. (62). Both pictures come together in the fact that con-
jugation with an invariant object (in our case the unitary
representing the trainable block) constitutes an equivariant
transformation.

The construction outlined above can be viewed as the
“adjoint” or “two-sided” version of the geometric deep
learning blueprint where we have to start from an invariant
object, the initial state, apply equivariant operations, and
then evaluate the expectation value again on an invariant
object.

A. Quantifying learning advantages

We have just outlined a blueprint for the construction of
invariant quantum reuploading models. It is logical to ask
how much the ability of the model to generalize to unseen
data actually increases when we replace a regular reupload-
ing model with its invariant counterpart. In this section,
we outline how a simple measure of symmetrization gain
captures the improvement achieved by our procedure.

Expressivity and generalization need to be balanced
to obtain a successful learning model. High expressivity
allows the model to capture a multitude of correlations in
the training data, but makes it prone to overfit on statisti-
cal fluctuations. Reducing expressivity reduces this danger,
but can reduce the overall performance of the model.
Our symmetrization procedure ensures that we reduce the
expressivity in a very informed way, as we only remove
degrees of freedom of the model that we know are not
present in the data.

The generalization capability can be captured by so-
called generalization bounds. These bounds are analytical
tools that give guarantees on the performance of a model
on unseen data given a certain number of data points in the
training set. They can thus serve to obtain upper bounds
on the number of training samples needed for a specific
performance on unseen data.

Consequently, there is a growing interest in rigorously
analyzing the generalization benefits of symmetrizing
models by computing the improvement of generalization
bounds associated with the models. As a first work in this
direction, Elesedy and Zaidi [54] quantified the improve-
ment for linear models and found that it is proportional to
the number of removed dimensions in the model’s output
function space when enforcing invariance. As reupload-
ing models are nonlinear, these results cannot be translated
directly to our procedure. It is an interesting future direc-
tion of research to determine if a similar argument could
be made about linear models in Hilbert space and if the

mapping of reuploading models to linear models proposed
in Ref. [37] can be applied in this context.

While we cannot apply the results of Ref. [54] straight-
forwardly, we can still build on prior work on generaliza-
tion bounds for variational quantum learning models that
appeared in Ref. [55]. It essentially tells us that the num-
ber of parameters of a quantum learning model is a good
proxy for generalization performance, even if the parame-
ters are reused in multiple gates. Caro et al. [55] proved
the following theorem.

Theorem 1 (Theorem 2 of Ref. [55], informal): For a
quantum learning model with T independent and possi-
bly polynomially often reused gate parameters, with high
probability over training data of size N , the generalization
gap of the empirical risk minimizer is of order

Õ
(√

T
N

)
, (65)

where the tilde hides logarithmic factors.

As our symmetrization procedure can be applied to any
sort of reuploading model, how much this changes the
model is highly dependent on the parametrization of the
trainable layers and how equivariant these already are.
Using the above result, we see that the ratio of parame-
ters of a model before and after symmetrization captures
how much less training data is required to achieve the same
guarantee on the generalization gap. We can rigorously
phrase this as a corollary of the above theorem.

Corollary 1 (Symmetrization gain): Consider a reu-
ploading model y(x) with T independent parameters. We
obtain an invariant reuploading model y ′(x) by apply-
ing the symmetrization procedure outlined in this work
that now has T′ independent parameters. Defining the
symmetrization gain

γ = T
T′ , (66)

the invariant model achieves the same guarantee on the
generalization gap as the original model given only a ratio
Õ(1/γ ) of the input samples.

We note that the symmetrization gain can be propor-
tional to the size of the quantum system, e.g., when a layer
of independent single-qubit gates is symmetrized with a
translation symmetry and is consequently replaced by a
layer of single-qubit gates with a shared parameter. In this
case, the improvement is of order γ = O(n), where n is the
number of qubits.

It is important to note that any result that quantifies
advantages through changes in generalization bounds, be
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it our statement built on the work of Caro et al. [55]
or the results of Elesedy and Zaidi [54], suffers from the
drawback that generalization bounds usually only capture
worst cases and that specific practical instances need not
have similar scaling in sample complexity. A reduction in
a specific generalization bound does not therefore neces-
sarily translate to an actual improvement in generalization
performance if the underlying problem is “easier” than
the worst case. This is a necessary feature of generaliza-
tion bounds as they make general statements about model
classes. However, we do think that our notion of sym-
metrization gain is meaningful, especially since the guar-
antees of Ref. [55] imply polynomial sample complexities
that are widely considered as efficient.

V. NUMERICAL EXPERIMENTS

In this section, we report on the results of numer-
ical experiments we undertake to compare the perfor-
mance of invariant learning models with their noninvariant
counterparts on two selected toy problems with nontriv-
ial symmetry. We observe that invariant learning models
under-perform on the training data, but have a much better
generalization performance than learning models that do
not respect the symmetry considerations. To ensure that the
symmetrization procedure proposed in Sec. III helps gener-
ically and that we did not cherry-pick a working edge case,
we also perform simulations where we randomize over the
layouts of the trainable parts of our learning models that

confirm our main numerics and show a generic advantage
in generalization.

We further investigate the performance of equivariant
ansätze for ground-state problems at the hands of the
transverse-field Ising model, the Heisenberg model, and
a longitudinal transverse-field Ising model that shares the
same symmetries as our learning toy problems. For these
problems, and in the ansatz constructions we have studied,
equivariant ansätze produce better ground-state approx-
imations on average while needing fewer iterations to
converge. We further show that equivariant ansätze can
mitigate the barren plateaus problem. We note, however,
that the applicability picture is not as clear as in the
quantum machine learning application and that equivariant
ansätze can also have downsides that we discuss in detail.

A. Tic tac toe

To showcase the methods outlined above we start by
considering a simple training task based on the well-known
tic-tac-toe game. The goal will be to train a variational
quantum learning model to classify games into the cat-
egories “cross won” (×), “circle won” (◦), or “draw”
(−). This classification problem has a nontrivial symme-
try group, as rotating the board and reflecting the board
about an axis does not change the outcome. It also has
the advantage that it can be realized with equivariant
embeddings on a modest number of nine qubits. The sym-
metries of the tic-tac-toe game are depicted on the left of
Fig. 3.

Single-qubit gates Entangling gatesDataGame

90°

270°

180°

Flip

Flip

Flip

Flip

W
in

ne
r:

EncodingSymmetry Equivariant gateset

FIG. 3. The winner of a game of tic tac toe is independent of rotations and flips of the board, which means that its symmetry group
is given by the dihedral group D4, as visualized on the left-hand side of the figure. We use a dataset of tic-tac-toe games encoded via
Pauli-X rotations on nine qubits, as visualized in the second column of the figure. The three different values of a field are equidistantly
encoded by using a multiple of 2π/3 for the rotation angle. Using our symmetrization procedure, we obtain an equivariant gateset
made up of single-qubit gates acting identically on the corners (green), edges (red), and the middle (yellow) of the board. The two-
qubit gates are given by controlled rotations between corners and edges (green), edges and the middle (red), and the middle and the
corners (yellow), where the control qubit is always listed first. Because of the symmetry, it is sufficient to specify the gates on one
neighboring trio of corner edge and middle, as visualized by the dark purple triangle.
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The symmetry group of this learning task is given by
the dihedral group D4, which is equivalent to all opera-
tions that map a square to itself. The dihedral group can be
generated by a counterclockwise rotation of 90◦ and a flip
about the vertical axis through the center. The group has
order 8, so has a total of eight elements. The group induces
equivalence classes of fields of the tic-tac-toe board, as
corners of the board will always be mapped to corners,
edges to edges, and the center will always stay the same.
These three equivalence classes will also be mirrored in the
equivariant gateset.

We note that the task of labeling games of tic tac toe is
easily solved by a classical deterministic algorithm, and in
fact, only a finite number of games are even possible. The
goal of this numerical example is to showcase a possible
end-to-end implementation of our symmetrization proce-
dure and to compare equivariant with standard gatesets.
Furthermore, in some of the following sections, we dis-
cuss how this example can be taken as a paradigm to tackle
other, potentially more useful problems.

1. Dataset

The first process is mapping a game of tic tac toe to clas-
sical data. As shown in the second column of Fig. 3, we do
so by mapping the nine fields of the board to elements of a
vector g where +1 represents a cross, −1 a circle, and 0 an
empty field. The labels of the game are encoded in a one-
hot fashion in a vector y = (y◦, y−, y×), where a value of
+1 is assigned to the correct label and −1 to the other two
entries. The number of distinct tic-tac-toe games is suffi-
ciently small so that we are able to generate all possible
valid games. In our dataset, we also allow for unfinished
games, which are labeled as “draw.” The training and test
data sets are then constructed by choosing a subset of all
possible games of tic tac toe at random, with the constraint
that each outcome is equally represented.

2. Learning model

To address the tic-tac-toe learning task, we make use of
a data reuploading model with an equivariant embedding
as described in Secs. I and II. The equivariant embedding
is constructed by encoding the different numerical values
that represent a game via a Pauli-X rotation on separate
qubits that we view in a planar grid. To distribute the three
data features equidistantly, we use a multiple of 2π/3 for
the rotation angle, again as shown in the second column of
Fig. 3.

The equivariance of the embedding ensures that symme-
try transformations are realized by unitary conjugation. For
example, a reflection along the vertical axis is implemented
by SWAP0,2SWAP7,3SWAP6,4 in the numbering of Fig. 3. The
advantage of permutation-type symmetries on the level of
qubits is that they can easily be understood on a visual

level. The qubits lie in equivalence classes under the sym-
metry operation. Single-qubit gates then have to act on all
qubits of the same equivalence class equally. This is how
we get the type of equivariant single-qubit layer that is
depicted in the third column of Fig. 3, where single-qubit
unitaries are applied that share the same parameters when
acting on corners, on edges, or on the middle. The same
reasoning can also be applied to two-qubit gates. An entan-
gling operation that connects, for example, a corner with
the edge next to it has to act in the same way on all pairs of
neighboring corners and edges. This is how we obtain the
equivariant layers of entangling gates used for our learning
models, which perform controlled rotations from corners
to neighboring edges, edges to the middle, and from the
middle to the corners, as depicted in the fourth column of
Fig. 3. We chose CRY for parametrized rotations.

The learning model starts with all qubits initialized in
the |0〉 state vector, which is invariant under the prob-
lem’s symmetry. Then a number of layers are applied, each
made up of one data encoding followed by a sequence of
parametrized layers. The default parametrized layer is cho-
sen to be “cemoid,” which corresponds to one application
of the single-qubit gates followed by the entangling gates,
both visible in Fig. 3. The prediction of a label is obtained
in a one-hot encoding by measuring the expectation values
of three invariant observables

O◦ = 1
4

∑
i∈corners

Zi = 1
4

[Z0 + Z2 + Z4 + Z6], (67)

O− = Zmiddle = Z8, (68)

O× = 1
4

∑
i∈edges

Zi = 1
4

[Z1 + Z3 + Z5 + Z7] (69)

as ŷ = (〈O◦〉, 〈O−〉, 〈O×〉). A prediction for a given data
point is obtained by selecting the class for which the
observed expectation value is the largest.

3. Training

We train the learning model using an l2-loss function,
which, for a set of games with associated one-hot label
vectors D = {(g, y)}, is given by

L(D) = 1
|D|

∑
(g,y)∈D

‖ŷ(g)− y‖2
2. (70)

We run optimizations with 100 epochs, each consisting of
30 steps. At each step, the gradient is computed using 15
data points representing a tic-tac-toe game. The size of the
training set is then the product of these two numbers, 15 ×
30 = 450. The training set is shuffled after each epoch is
completed. The test set comprises 600 randomly chosen
games with the same constraint as above and kept fixed
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throughout the run. The above hyperparameters are chosen
empirically.

The quantum learning model is implemented with the
PennyLane library [56] for quantum machine learning.
Using the PyTorch interface provided by PennyLane, we
train the PQC by stochastic gradient descent as imple-
mented by the Adam PyTorch optimizer [57].

4. Results

In all our numerics, we compare invariant with non-
invariant models where the parameter sharing indicated
in Fig. 3 is not imposed. The noninvariant models there-
fore have more independent parameters and hence a higher
expressivity. To evaluate the performance of the models,
we record the classification accuracy for the training and
the test sets. The general trend we observe is that invari-
ant models built from equivariant circuits achieve the same
or lower accuracy on the training set, but consistently
higher accuracy on the test set, which indicates their better
generalization capabilities.

We first verify that this is the case for circuits of differ-
ent sizes. Figure 4 compares the results of invariant and
noninvariant models composed of l layers, each of which
consists of one data encoding followed by p independent
repetitions of the layout “cemoid.” We refer to the differ-
ent architectures with the pair (l, p), and we sweep over
the range (l, p) ∈ {1, . . . , 5}2. Because of limited com-
putational resources, we are unable to record the results
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FIG. 4. Violin plot of the difference in achieved mean accu-
racies between the invariant and noninvariant models in a sweep
over different values of l and p as detailed in the text. Positive val-
ues correspond to invariant models outperforming noninvariant
ones. The mean is averaged over ten runs for each combination
of l and p . We see that the mean accuracy on the training data is
more or less the same for both invariant and noninvariant models,
but that the invariant models clearly outperform the noninvariant
ones on the test data. The magnitude of the difference compares
well to the absolute test accuracies of both models that, depend-
ing on l and p , lie between 0.59 and 0.80 (invariant) and 0.48 and
0.62 (noninvariant), significantly larger than the random guess-
ing probability 0.33. The full training graphs are given in Fig. 14
in the Appendix.

for the values (l, p) ∈ {(4, 4), (4, 5), (5, 3), (5, 4), (5, 5)}.
In this experiment, the parametrized entangling gates
are chosen to be CRY(θ), but similar experiments with
different controlled Pauli rotations produce comparable
results.

The difference in accuracy on the training set should not
come across as odd, since invariant models only express a
subset of the output mappings of the noninvariant ones. For
noninvariant models, high training accuracy and low test
accuracy are clear witnesses of the overfitting regime. On
the contrary, for invariant models, we see that the price we
pay by lowering the expressivity returns a very similar per-
formance on both previously seen and unseen data, hinting
at the sweet spot in the bias-variance trade-off. Formally,
we say that the empirical generalization gap of invariant
models is much smaller than that of noninvariant ones,
which confirms our expectations.

As a sanity check, and to make sure that we did not
cherry-pick a working example, we study the performance
of other variational layouts different from “cemoid.” We
do so by fixing the number of layers to l = 3, where
after encoding the data with “t” we take three consecu-
tive random permutations of “cemoid” without contiguous
repetitions. An example of such a layout is “tdomiececiod-
mdmoiec,” which we then repeat three times. In total, 20
different layouts are generated and simulated. The sum-
mary of results in Fig. 5 reveals that the test performance
of the invariant models is consistently higher across dif-
ferent layer layouts, with few exceptions. This confirms
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FIG. 5. Violin plot of the difference in achieved accuracies
between the invariant and noninvariant models for 20 random
parametrizations of the trainable blocks as detailed in the text.
Positive values correspond to invariant models outperforming
noninvariant ones. The values for every parametrization are aver-
aged over ten repetitions with random parameter initializations.
We see that the mean accuracy on the training data is more or
less the same for both invariant and noninvariant models, but that
the invariant models again clearly outperform the noninvariant
ones on the test data. The magnitude of the difference com-
pares well to the absolute test accuracies of both models that lie
between 0.68 and 0.80 (invariant) and 0.60 and 0.66 (noninvari-
ant), significantly larger than the random guessing probability
0.33.
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our expectations that making learning models invariant
helps more or less generically to enhance generalization
performance.

B. Classifying autonomous vehicle scenarios

The tic-tac-toe task provides an intuitive example of
how we can exploit symmetry in learning, but it does not
connect to a relevant real-world learning scenario. In this
section, we want to outline how we can use the intuition
developed in the tic-tac-toe example and apply it to a toy
model of a task that is of actual relevance in the automo-
tive industry and shows a clear way of connecting to a
real-world scenario.

Autonomous driving is a future-oriented field of the
automotive industry, for which two main challenges inter-
act. First, the vehicle must be able to recognize and
automatically evaluate its surroundings to deduce pos-
sible driving maneuvers to reach a goal. Second, the
automated evaluation performed by the car requires ver-
ification and testing along the development cycle of the
car. To meet these challenges, scenario-based development
is state of the art [58]. We define a scenario as a con-
catenation of a scene (snapshot of the surrounding) and
actions (destination goals and values). Therefore, a sce-
nario is a specific description of a driving situation, taking
into account dynamic and static components that are deter-
mined by the sensor systems of the vehicle, map data,
and others [59]. In the development process of the vehi-
cle different predefined scenarios are classified with respect
to their safety relevance according to a criticality met-
ric. This classification will then be used to evaluate the
requirements for testing, in the field or in simulation. The
Pegasus Project [60] classifies the scenarios into different
levels. In this publication, we concentrate on street level
1, which includes geometry and topology of the streets,

in order to demonstrate our concept. Driving-maneuver
classification is investigated using classical machine learn-
ing tools among other approaches [61,62]. We again want
to emphasize that, for the purpose of this paper, the original
classification task is reduced to a simple version that can be
simulated with the computational resources available to us.
It is however clear how larger resources in terms of quan-
tum computational hardware would allow us to address
parts of the actual question as soon as it becomes available.

1. Dataset

In the following, we derive driving scenarios at differ-
ent street intersections, deduce the geometric symmetries,
and build a classification of the possible actions according
to their safety relevance. Since relevant scenarios include
behavior at intersections, traffic circles, and traffic jams
[63], we consider the following simplified street situations,
using a 3 × 3 grid. Each tile of this grid can be either part
of a road or be impassable, and a car is placed on one of
the road tiles. With this encoding, we are able to represent
different geometries from a straight road to a more compli-
cated intersection. The symmetries of these scenarios are a
subset of the tic-tac-toe case as a scenario can always be
rotated by 90◦(see the right panel of Fig. 6), but not neces-
sarily mirrored in all instances as left turns have a different
difficulty than right turns. We translate this into a 3 × 3
array x, where a road tile is encoded with 1, an impassable
tile with −1, the car with −1/3, and the orientation of the
car with 1/3. An example of this can be seen in the middle
panel of Fig. 6.

We rate the level of difficulty y with regards to a sim-
plified criticality metric as follows: forward: 0; right or
left curve: 0.2; forward and right (T crossing, intersection
of three streets): 0.4; forward and left (T crossing, inter-
section of three streets): 0.6; left and right (T crossing,

1

1 13/1

3/-1-1

-1

-1

-1

Representation SymmetryExamples of difficulties

FIG. 6. Examples of the various difficulties encountered in the autonomous driving toy model (left), a demonstration of the data
representation (middle), and a demonstration of the rotational symmetry of the model (right).
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intersection of three streets): 0.8; forward, left, and right
(X crossing, intersection of four streets): 1. Examples of
the possible difficulties are visualized in the left panel of
Fig. 6 alongside a representation of the data encoding and
a demonstration of the symmetry.

The different scenarios x are generated by first hand
placing various road layouts (T intersection, left curve, X
intersections, . . . ), generating all their images under rota-
tions and reflections and then putting the car on every
possible road tile. Additionally, every possible orienta-
tion of a placed car is iterated. This process creates the
total set of possible scenarios and their associated difficulty
D = {(x, y)}.

As for the tic-tac-toe games, training and test data sets
are constructed by choosing a subset of scenarios at ran-
dom, with the constraint that each difficulty level is equally
represented.

2. Learning model

The general circuit construction is essentially the same
as in the tic-tac-toe case and follows the data reupload-
ing models as described in Secs. I and II. The different
numerical values that represent a scene are encoded via
a Pauli-X rotation on the separate qubits where the rota-
tion angle is given by a multiple 2π/3 of the array value as
in the tic-tac-toe case. The key difference to the tic-tac-toe
case is the missing mirror symmetry, rendering the actual
symmetry group to Z4 instead of D4. This only affects the
outer layer and splits it into two distinct sublayers: one
where controlled operations are performed clockwise with
shared parameters and one where controlled operations are
performed counterclockwise with shared parameters.

As in the tic-tac-toe case, all qubits are initialized in
the |0〉 state and layers of data encoding followed by
parametrized gates are applied. The default topology for
the parametrized blocks is again chosen to be “cemoid,”
where it is understood that the outer layer splits into two
sublayers as explained above. The model’s prediction ŷ
of difficulty is obtained by measuring and normalizing the
Pauli-Z expectation value of the middle qubit Z8:

ŷ = 〈Zmiddle〉 + 1
2

= 〈Z8〉 + 1
2

. (71)

A hard prediction for a given scenario x is obtained by
rounding ŷ to the nearest difficulty in {0, 0.2, 0.4, 0.6,
0.8, 1}.

3. Training

The learning model is trained using an l2-loss function
that is, for a set of games D = {(x, y)}, given by

L(D) = 1
|D|

∑
(x,y)∈D

(ŷ(x)− y)2. (72)

No epochs are used in this case and optimizations are
run with 30 steps. At each step, the gradient is computed
for the same 60 scenes. As the limited grid size of 3 × 3
only allows four difficulty 1 (X crossing) scenarios, ran-
dom copies are created to ensure an equal distribution (ten
games of each difficulty). After each step, the accuracy
on the training data and the test data, which consisted of
130 unique games, is evaluated by calculating the fraction
of correctly classified inputs. The above hyperparameters
are again chosen empirically. The numerical experiments
are performed using the PennyLane library [56]. For the
two-qubit gates, only the CRZ gate is implemented. All
optimizations are executed using the PyTorch L-BFGS
optimizer [57].

4. Results

We repeat the experiments we designed for the tic-
tac-toe learning task, now with this different dataset. As
expected, we observe the same general trend. We repeat
that we compare an invariant model with the noninvariant
model obtained from the invariant one where the parameter
sharing indicated in Fig. 3 is not imposed. The noninvari-
ant models therefore have more independent parameters
and hence a higher expressivity. To evaluate the perfor-
mance of the models, we record the classification accuracy
for the training and the test sets.

We again study different hyperparameters for the archi-
tecture of the learning model. Recall that we use l layers
consisting of a data encoding followed by p repetitions
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FIG. 7. Violin plot of the difference in achieved mean accu-
racies between the invariant and noninvariant models in a sweep
over different values of l and p as detailed in the text. Positive val-
ues correspond to invariant models outperforming noninvariant
ones. The mean is averaged over ten runs for each combination
of l and p . We see that the mean accuracy on the training data is
more or less the same for both invariant and noninvariant models,
but that the invariant models clearly outperform the noninvariant
ones on the test data. The magnitude of the difference compares
well to the absolute test accuracies of both models that, depend-
ing on l and p , lie between 0.17 and 0.97 (invariant) and 0.17 and
0.64 (noninvariant), significantly larger than the random guess-
ing probability 0.17. The full training graphs are given in Fig. 15
in the Appendix.
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FIG. 8. Violin plot of the difference in achieved accuracies
between the invariant and noninvariant models for 20 random
parametrizations of the trainable blocks as detailed in the text.
Positive values correspond to invariant models outperforming
noninvariant ones. For every parametrization, ten random initial-
izations are performed and then averaged. We see that the mean
accuracy on the training data is more or less the same for both
invariant and noninvariant models, but that the invariant models
clearly outperform the noninvariant ones on the test data. The
magnitude of the difference compares well to the absolute test
accuracies of both models that lie between 0.48 and 0.80 (invari-
ant) and 0.39 and 0.58 (noninvariant), significantly larger than
the random guessing probability 0.17.

of the atom “cemoid.” We sweep over the range (l, p) ∈
{1, . . . , 5}2 except for the values (4, 4), (4, 5), (5, 3), (5, 4),
and (5, 5). As can be seen in Fig. 7, most invariant learn-
ing models perform worse than noninvariant models on
the training set and better on the test set. A straight-
forward explanation would be the position the different
models take in the bias-variance trade-off: the overfitting
regime for noninvariant models and the sweet spot for
invariant models. The full data presented in Fig. 15 in the
Appendix further support this intuition as the data show a
drop in accuracy for high (l, p) values, where the expres-
sivity of both models is found empirically to be too high
for this task. This experiment crystallizes in the state-
ment: invariant models generalize better than noninvariant
models.

We also repeat the randomization experiment over the
specific spelling of the trainable parts, with the results
being reported in Fig. 8. We make circuits with a random
layer repeated 3 times. Random layers start with a data
encoding followed by three consecutive random permuta-
tions of “cemoid,” such that there are no repeated letters
adjacent. Again, in almost every case the invariant models
outmatch the noninvariant ones.

C. Variational quantum eigensolvers

The gate symmetrization procedure proposed in this
work only necessitates the existence of a unitary sym-
metry representation on the level of the Hilbert space.
It can therefore also be applied to ground-state problems

where conserved quantities of the Hamiltonian yield rep-
resentations of symmetries. This case is paradigmatically
treated through a variational algorithm using the varia-
tional quantum eigensolver. In the following, we conduct
some numerical experiments that showcase the advan-
tages and disadvantages of generic symmetrization in this
context.

1. Transverse-field Ising model

We first consider the transverse-field Ising model
(TFIM) [64] as a paradigmatic example. The TFIM Hamil-
tonian with periodic boundary conditions on N spins is
given by

HTFIM = −
N∑

i=1

ZiZi+1 − g
N∑

i=1

Xi, (73)

where we consider a transverse field strength g > 0.
The TFIM Hamiltonian has a Z2 symmetry as it com-

mutes with the parity operator

P =
N∏

i=1

Xi. (74)

The unitary representation is then given by Us = Ps for
s ∈ Z2. The eigenvalues of the parity operator are either
+1 or −1. For g → ∞, the ground-state vector is given
by |+〉⊗N , which has a parity of +1. Using the adiabatic
theorem and the fact that, for finite system size, the ground-
state energy is not degenerate, we can conclude that the
parity of the ground state is the same for each g > 0.
Therefore, if we want to force our ansatz state to encode
this symmetry, we require that

P |ψ(θ)〉 = + |ψ(θ)〉 . (75)

Of course, it is not necessary for our ansatz to respect this
property for all values of the parameters as long as it finds
the correct ground state, but in many cases it can be benefi-
cial to restrict the expressivity of the ansatz into a relevant
part of the Hilbert space. If we do this, however, we have
to assure that the ansatz does produce a state that is in
the same symmetry sector as the true ground state. This
can be assured by taking an initial state that has the cor-
rect symmetry, for example |ψ0〉 = |+〉⊗N , and then only
performing equivariant gates that can be obtained from
the symmetrization procedure of Sec. III. We note again
that one has to be attentive to the fact that symmetriza-
tion has to be executed with care as it can trivialize certain
generators.

In our numerical experiments, we use the QAOA ansatz
[65] that can be easily seen to be equivariant with respect
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to the parity symmetry,

|ψQAOA (β, γ )〉 =
p∏

m=1

N∏
i=1

e−iβmXi

N∏
i=1

e−iγmZiZi+1 |ψ0〉 .

(76)

Here, p is the number of QAOA layers. We compare it to
a variant of the QAOA ansatz that we denote as QAOA′,
where adding an additional mixer term involving Pauli-Y
rotations increases the expressivity as

|ψQAOA′(α, β, γ )〉

=
p∏

m=1

N∏
i=1

e−iαmYi

N∏
i=1

e−iβmXi

N∏
i=1

e−iγmZiZi+1 |ψ0〉 . (77)

As PYiP = −Yi, the gate symmetrization procedure of
Sec. III will remove these Pauli-Y rotations and will yield
the standard QAOA ansatz, which has been widely stud-
ied and shown [66–69] to provide a faithful ground-state
approximation for the TFIM when p ≥ N/2, while for p <
N/2, the QAOA ansatz can only reach a variational energy
that is above the ground-state energy [67] due to light-cone
arguments [66]. This behavior can also be observed in our
experiments.

We compare the performance of the two ansätze using
the TFIM with N = 10 spins and different values for the
number of QAOA layers p . We optimize using the L-
BFGS optimizer until convergence is reached. We perform
the optimization for 20 random initializations of the circuit
parameters and average the results to arrive at the statistics
shown in Fig. 9. For all values of p , the QAOA ansatz
needs fewer iterations to converge. For small p < N/2,
we observe that the QAOA ansatz does not converge to
a good approximation of the ground state, which is in line
with the aforementioned previous findings. In this regime,
it is outperformed by the nonequivariant ansatz, highlight-
ing the trade-off between expressivity and equivariance.
If the circuit depth p ≥ N/2 is large enough, the picture
reverses and the equivariant QAOA ansatz reliably reaches
the ground state whereas the nonequivariant QAOA′ ansatz
converges to an energy above the ground state on average.

2. Heisenberg model

Another model that has a continuous symmetry group is
given by the Heisenberg model [64] with periodic bound-
ary conditions on an even number N of spins captured by
the Hamiltonian

HHeis =
N∑

i=1

XiXi+1 + YiYi+1 + ZiZi+1. (78)

We can understand this Hamiltonian as the alignment
of two neighboring spins. Quite logically, if we rotate

0.0

0.1

0.2

0.3

E
−

E
G

S

Equivariant

Not equivariant

2 4 6 8 10 12
p

0

250

500

750

1000

It
er

at
io

ns

FIG. 9. Comparison of the equivariant QAOA ansatz with the
nonequivariant QAOA′ ansatz for the TFIM on N = 10 spins
with field g = 1. For every number of layers p , we perform 20
experiments with random initializations of the parameters and
plot the difference between the mean achieved energy and the
ground state energy (top) and the number of iterations necessary
to reach it (bottom). We see that, for p ≥ N/2, the equivariant
ansatz performs better in both figures of merit.

all spins simultaneously, the relative alignment will not
change. The symmetry group of the model is thus SU(2),
represented by

UV = V⊗N for V ∈ SU(2). (79)

As in the previous example, we initialize the quantum
computer in a state that lies in the right symmetry sector,
which in the case of the Heisenberg model is given by all
states that have zero total spin, and we choose for the state
vectors

|ψ0〉 =
N/2⊗
k=1

1√
2
(|0, 1〉 − |1, 0〉). (80)

For the Heisenberg model, we start from the nonequivari-
ant ansatz

|ψ(θ)〉 =
p∏

m=1

N∏
i=1

e−iα(m)Yie−iHeven(β(m))e−iHodd(γ
(m)) |ψ0〉 ,

(81)

where Heven(βm) is an anisotropic Heisenberg Hamiltonian
defined on the even lattice sites, i.e.,

Heven(β) =
N∑

i=2
i even

βxXi−1Xi + βyYi−1Yi + βzZi−1Zi. (82)
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The Hamiltonian Hodd(γ ) is analogously defined but acts
on the odd sites. For the even and odd Hamiltonians, we
have three parameters each; together with the α parameter
controlling the Pauli-Y rotation, we have seven parameters
per layer, yielding 7p parameters in total. We note that,
since Heven and Hodd are both linear combinations of com-
muting operators, we can decompose the corresponding
unitaries using two-qubit gates.

The above ansatz is not equivariant, which means that
we need to apply the symmetrization procedure. The sym-
metrization procedure corresponds to a particular instance
of a 2-design twirl

TU[X1X2] =
∫

dμ(V)V⊗N X1X2(V†)⊗N

=
∫

dμ(V)V⊗2X1X2(V†)⊗2. (83)

These calculations can be straightforwardly performed
using the Weingarten calculus (see, e.g., Ref. [70]). The
important fact for us is that any outcome of a 2-design twirl
will be a sum of identity and SWAP,

TU[X1X2] = c0I + c1SWAP

= c0I + c1

2
(I + X1X2 + Y1Y2 + Z1Z2), (84)

where we have used the expansion of SWAP into Pauli
words. Note that identity terms only generate global
phases, which means that the effective symmetrized gen-
erator associated with X1X2 can be taken to be

TU[X1X2] ∼ X1X2 + Y1Y2 + Z1Z2. (85)

This generator gives rise to the particle-number-conserving
Givens rotations [15]. The additional Pauli-Y rotation in
turn is trivialized by the symmetrization procedure

TU[Y1] =
∫

dμ(V)VY1V† = Tr(Y1)

2
I = 0, (86)

where we have exploited the formula associated with the
first moment operator [71].

The same argument holds for the other terms, which
yields the equivariant ansatz

|ψ(θ)〉 =
p∏

m=1

N∏
i=1

e−iβ(m)Hevene−iγ (m)Hodd |ψ0〉 , (87)

where we have chosen Heven and Hodd to be the isotropic
variants given by β = γ = (1, 1, 1). The equivariant
ansatz we obtain with the symmetrization procedure has
the same form as the Hamiltonian variational ansatz used
in Refs. [67,69]. Note that the equivariant ansatz has 2p
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FIG. 10. Comparison of the equivariant and the nonequivari-
ant ansätze for the Heisenberg model on N = 10 spins. For every
number of layers p , we perform 20 experiments with random ini-
tializations of the parameters and plot the difference between the
mean achieved energy and the ground state energy (top) the num-
ber of iterations necessary to reach it (bottom). We see that, for
large enough p , the equivariant ansatz performs better in both
figures of merit. For p small, however, the approximation to the
ground state is worse.

parameters in total compared to the 7p of the nonsymmet-
ric ansatz.

We compare the performance of the two ansätze using
the Heisenberg model with N = 10 spins and different val-
ues for the number of layers p . As in the TFIM numerics,
we optimize using the L-BFGS optimizer until conver-
gence is reached and average the outcomes over 20 random
initializations of the circuit parameters to arrive at the data
shown in Fig. 10.

We see that the equivariant ansatz reaches its mini-
mum energy faster across all depths. However, only for
a large enough depth p can it outperform the nonequiv-
ariant ansatz in terms of the energy expectation value.
This nicely shows the trade-off between expressivity and
symmetrization, as, for small p , the increased expressivity
of the nonequivariant ansatz is at an advantage over the
equivariance of the symmetrized ansatz. However, as soon
as the equivariant ansatz becomes sufficiently expressive,
the picture reverses.

3. Barren plateaus

In a further numerical experiment that uses the same
setups as above—TFIM and the Heisenberg model—we
analyze the influence of our symmetrization procedure
on the barren plateaus phenomenon [72,73]. Symmetriza-
tion reduces the expressivity of the ansatz by reducing
the number of free parameters and additionally alters the

010328-20



SYMMETRY IN VARIATIONAL QML PRX QUANTUM 4, 010328 (2023)

4 8 12 16

N

10−4

10−3

10−2

10−1

100

101
V

ar
C

TFIM

4 8 12 16

N

Heisenberg

Equivariant

Not Equivariant

FIG. 11. Comparison of the barren plateaus phenomenon for
the TFIM and the Heisenberg model considered in Figs. 9 and 10.
The derivative is computed with respect to the rotation angle of
the first qubit in the first layer using as the observable Z1Z2 with
p = 80 for the TFIM and p = 40 for the Heisenberg model. The
variance is calculated using 1000 randomly sampled parameters
from a uniform distribution [0, 2π ].

dynamical Lie algebra associated with the ansatz gener-
ators, which is known to be intimately related to barren
plateaus [74]. We therefore expect that the equivariant
ansatz will have larger gradients in the applications stud-
ied here. In Fig. 11, we can indeed observe that the barren
plateaus phenomenon is mitigated by the symmetrization
procedure. For the transverse-field Ising model, the gradi-
ent decay of the equivariant ansatz is consistent with the
polynomial scaling predicted by the reduced dimension of
the dynamical Lie algebra found in Ref. [74], whereas the
nonequivariant ansatz shows an exponential decay. In the
case of the Heisenberg model, the equivariant ansatz shows
an exponential decay like its nonequivariant counterpart,
but the gradient magnitude is enhanced and we see signs
of a slightly slower decay exponent.

4. Tic-tac-toe LTFIM

The last model we analyze is a variant of the
longitudinal-transverse-field Ising model (LTFIM) defined
on a two-dimensional lattice of nine sites. This model is
constructed such that it has the same geometric symmetry
as the tic-tac-toe example that we encountered above. We
can write the Hamiltonian as

HTTT = HZZ +
9∑

i=1

Xi +
9∑

i=1

Zi, (88)

where HZZ determines the interaction of the spins. As
shown in Fig. 12, we distinguish three families of edges
through their interaction strength: those in the contour of
the lattice (triple lines in the figure), those along the diag-
onals (single lines), and those at the inside (double lines).

So we choose HZZ to be

HZZ = Hcont + 1
2 Hinside + 3

2 Hdiag, (89)

where every term is a sum of the ZZ interactions for the
given set of edges

HA =
∑

(i1,i2)∈A

Zi1Zi2 . (90)

This model has clear geometric symmetries that are the
same as those we used in the tic-tac-toe learning task. In
Fig. 12, we represent the qubits that are equivalent under
symmetry transformation with the same colors. Note that
we have three independent families of qubits and also of
edges.

For this model, we use an ansatz that is composed of p
repeated layers of entangling ZZ rotations for each edge
in Fig. 12, and Pauli-X and Pauli-Z rotations on each
qubit. The symmetrization procedure will enforce that the
gate parameters of the gates are the same for equivalence
classes of edges for the entangling gates and for equiv-
alence classes of spins for the single-qubit gates. Thus,
in the nonsymmetric case, we have (16 + 9 + 9)p free
parameters in total, while in the symmetric one we have
a reduction to (3 + 3 + 3)p free parameters. The invariant
state vector |+〉⊗N is used as the initial state.

We numerically test the performance of the two ansätze
in a manner similar to that of previous models, as shown in
Fig. 13. We can conclude that in this model, the equivariant
ansatz performs better on average than the nonequivariant
one, both in achieved energy and the number of needed
iterations for the circuit depths tested. However, we see
that there is an uptick in the energy achieved by the equiv-
ariant ansatz for larger layers that probably indicates that
this advantage is not stable against increasing the depth of

FIG. 12. Graph for the LTFIM lattice model. The different col-
ors used for the vertices emphasize the fact that sites that share
the same color also share the same parameter in the one-qubit
gates, and similarly for the different thicknesses of edges used
for the two-qubit gates.
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FIG. 13. Comparison of the equivariant and the nonequivari-
ant ansätze for the TTT-LTFIM model. For every number of
layers p , we perform ten experiments with random initializa-
tions of the parameters and plot the difference between the mean
achieved energy and the ground state energy (top) and the num-
ber of iterations necessary to reach it (bottom). For small circuit
depths, the equivariant ansatz performs better than the nonequiv-
ariant one. This advantage does not seem to persist to higher
depths.

the circuit. This underscores the fact that symmetrization
is usually expected to be helpful, but it is still a tool that
needs to be treated with care as it is no panacea.

5. Discussion

In the examples shown above, we examined different
figures of merit, such as the final energy, the required iter-
ations for the optimizer, and barren plateaus, to see if the
use of an equivariant ansatz can yield better performance.
We verified that in some cases it actually does, especially
in the number of iterations necessary to reach a solution.
We attribute this to the reduction in the number of free
parameters of the model, which simplifies the underlying
optimization problem. However, the picture is less clear
when looking at the achievable minimal energy. In our
numerics, we observed the trade-off between the gain in
equivariance of the ansatz on the one hand and the reduc-
tion in expressivity on the other hand. Especially at small
circuit depths, it can be advantageous to have a nonequiv-
ariant ansatz that can explore larger portions of the Hilbert
space, whereas at larger circuit depths the restriction of the
expressivity to the relevant subspace of the Hilbert space
can help.

This further motivates the use of carefully engi-
neered symmetry breaking in conjunction with equivariant
ansätze, especially at small circuit depths, as was explored

in Ref. [24]. A theoretical underpinning to this reason-
ing was given in Ref. [75], where it was shown that an
ansatz that preserves parity symmetry, such as QAOA with
a shallow circuit, may be an obstacle for the preparation
of the ground state of certain Hamiltonians. It is there-
fore essential to further clarify the conditions under which
an equivariant ansatz can lead to better performance in
ground-state preparation problems.

VI. SUMMARY AND OUTLOOK

In this work, we have laid the foundations for the con-
struction of variational quantum learning models that make
predictions invariant under a symmetry transformation of
the data. We have shown that the embedding of the data
into the Hilbert space of the quantum system plays a cru-
cial role and that it has to be chosen suitably to induce
a meaningful unitary representation of the data symme-
try on the level of the Hilbert space. We have provided
embeddings that allow doing this for the most important
symmetries encountered in contemporary learning sce-
narios, namely the permutation-type symmetry, and also
embeddings that induce a meaningful representation of the
Lie group O(3) of orthogonal spatial transformations.

With the unitary representation of the symmetry at hand,
we show how elementary results from representation the-
ory can be used to construct equivariant gatesets from
standard gatesets used for the construction of variational
quantum learning models. Armed with these gatesets,
the construction of invariant reuploading models becomes
possible: alternating layers of equivariant data embeddings
and equivariant trainable blocks applied to a symmetry-
invariant initial state yield invariant predictions when eval-
uated on a symmetry-invariant observable. In this way,
we give both a blueprint and tools for the construction
of invariant variational quantum machine learning mod-
els. Moreover, using equivariant gatesets is a much needed
building block that allows us to inform decisions about
how to construct quantum learning models, which is a
first step to a solution of the quantum model selection
problem. To increase the applicability of these tools, we
also outlined the pitfalls that one should avoid when using
them.

The numerical experiments we have conducted on the
tic-tac-toe toy example and the autonomous vehicles toy
problem have confirmed our expectation that invariant
learning models indeed have better generalization capabil-
ities, as their expressivity is constrained to a set of output
functions that include some knowledge about the underly-
ing data. We have also ensured that we did not cherry-pick
the results by comparing random invariant model architec-
tures with their noninvariant counterparts where we have
observed the same results.

As the existence of a unitary symmetry representation is
sufficient for the construction of equivariant gatesets, these
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can also be applied to problems outside the realm of vari-
ational quantum machine learning. We paradigmatically
explored this possibility by comparing equivariant with
nonequivariant ansatz circuits for ground-state-type prob-
lems where conserved quantities of the Hamiltonian give
rise to a symmetry. Our analysis on the transverse-field
Ising model, the Heisenberg model, and a variant of the
longitudinal transverse-field Ising model with geometric
symmetry allow us to conclude that equivariant ansätze
can be helpful in this application as well. They often

allow us to reach a better energy estimate in fewer itera-
tions and help to alleviate the problem of barren plateaus.
Nevertheless, the picture is not as clear as in the learning
scenario that we discussed in detail.

We have studied the question of equivariant quantum
embeddings for the case of O(3). But there is no fun-
damental reason why other Lie groups that constitute a
data symmetry should not also be amenable to equivari-
ant quantum embeddings. While this is a somewhat exotic
direction from the perspective of real-world learning tasks,
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FIG. 14. Plots of the sweep over different values of l and p for the classification of tic-tac-toe games arranged in a grid. Shown on
the y axis is the mean test accuracy for the invariant (blue) and noninvariant (orange) models, where the average over the ten runs is
plotted in a darker color. Models are composed of l layers, each of which contains one data encoding followed by p times the standard
layout “cemoid.” Optimizations are performed for 100 epochs with 30 steps each. At every step, the gradient is computed on 15 games
with a total training set size of 15 × 30 = 450. When an epoch ends, the training set is shuffled and the accuracy is evaluated on a
test set of 600 random games, which is fixed throughout a simulation. We can see that the invariant model clearly outperforms the
noninvariant model. Not simulated are circuits for the values (4, 4), (4, 5), (5, 3), (5, 4), and (5, 5) due to their growing computational
demand. Further details can be found in the main text.

010328-23



JOHANNES JAKOB MEYER et al. PRX QUANTUM 4, 010328 (2023)

we expect that future research into the interplay between
data embeddings in the quantum system’s Lie algebra and
unitary representations of the symmetry on the level of the
Hilbert space will allow us to learn much more about the
inner workings of variational quantum learning models.

Another interesting direction for future research is to
prove rigorous results about the generalization capabilities
of invariant quantum machine learning models, with the
aim to find quantitative expressions of how much exploit-
ing a particular symmetry helps to better solve the learning

task at hand. One should also note that we have only run
numerical experiments on maximally nine qubits for the
learning problems, as our computational resources have
been limited. In the future, it will be interesting to compare
invariant variational quantum learning models to classical
models on more realistic learning tasks.

In this work, we have only considered exact symme-
tries, both on the level of the problem and on the level
of the implementation. However, both in nature and in
learning problems, symmetries are often only approximate.
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FIG. 15. Plots of the sweep over different values of l and p for the classification of autonomous vehicle scenarios arranged in a
grid. Shown on the y axis is the mean test accuracy for the invariant (blue) and noninvariant (orange) models, where the average
over the ten runs is plotted in a darker color. Models are composed of l layers, each of which contains one data encoding followed
by p times the standard layout “cemoid.” Optimizations are performed for 30 steps with no epochs on the same training set of 60
situations that are chosen randomly at the start of each simulation. The accuracies are evaluated after each step on a test set of 130
random but unique situations, which is fixed throughout a simulation. We can see that the invariant model clearly outperforms the
noninvariant model. Additionally, it can be explicitly observed that, for high (l, p) values, the expressivity is empirically too high as
accuracies drop sharply for both models. Not simulated are circuits for the values (4, 4), (4, 5), (5, 3), (5, 4), and (5, 5) due to their
growing computational complexity. Further details can be found in the main text.
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We believe that it will be a fruitful research direc-
tion to analyze the capabilities of approximately invari-
ant learning models in these cases. Finally, it is our
hope that this work stimulates further research efforts
aimed at exploiting symmetry in variational quantum algo-
rithms in the context of quantum machine learning and
beyond.

The code for implementations and data of the numerical
experiments conducted in this work will be made available
upon reasonable request.
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APPENDIX: ADDITIONAL FIGURES

We provide additional details on the numerical experi-
ments conducted in the main text in Figs. 14 and 15.
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