dc.contributor.author
Greife, Paul
dc.contributor.author
Schönborn, Matthias
dc.contributor.author
Capone, Matteo
dc.contributor.author
Assunção, Ricardo
dc.contributor.author
Narzi, Daniele
dc.contributor.author
Guidoni, Leonardo
dc.contributor.author
Dau, Holger
dc.date.accessioned
2023-05-22T10:56:03Z
dc.date.available
2023-05-22T10:56:03Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39392
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39109
dc.description.abstract
Photosynthesis fuels life on Earth by storing solar energy in chemical form. Today’s oxygen-rich atmosphere has resulted from the splitting of water at the protein-bound manganese cluster of photosystem II during photosynthesis. Formation of molecular oxygen starts from a state with four accumulated electron holes, the S4 state—which was postulated half a century ago1 and remains largely uncharacterized. Here we resolve this key stage of photosynthetic O2 formation and its crucial mechanistic role. We tracked 230,000 excitation cycles of dark-adapted photosystems with microsecond infrared spectroscopy. Combining these results with computational chemistry reveals that a crucial proton vacancy is initally created through gated sidechain deprotonation. Subsequently, a reactive oxygen radical is formed in a single-electron, multi-proton transfer event. This is the slowest step in photosynthetic O2 formation, with a moderate energetic barrier and marked entropic slowdown. We identify the S4 state as the oxygen-radical state; its formation is followed by fast O–O bonding and O2 release. In conjunction with previous breakthroughs in experimental and computational investigations, a compelling atomistic picture of photosynthetic O2 formation emerges. Our results provide insights into a biological process that is likely to have occurred unchanged for the past three billion years, which we expect to support the knowledge-based design of artificial water-splitting systems.
en
dc.format.extent
24 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Artificial photosynthesis
en
dc.subject
Bioenergetics
en
dc.subject
Bioinorganic chemistry
en
dc.subject
Photosystem II
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
The electron–proton bottleneck of photosynthetic oxygen evolution
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41586-023-06008-5
dcterms.bibliographicCitation.journaltitle
Nature
dcterms.bibliographicCitation.pagestart
623
dcterms.bibliographicCitation.pageend
628
dcterms.bibliographicCitation.volume
617
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41586-023-06008-5
refubium.affiliation
Physik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0028-0836
dcterms.isPartOf.eissn
1476-4687