dc.contributor.author
Chinichian, Narges
dc.contributor.author
Kruschwitz, Johann D.
dc.contributor.author
Reinhardt, Pablo
dc.contributor.author
Palm, Maximilian
dc.contributor.author
Wellan, Sarah A.
dc.contributor.author
Erk, Susanne
dc.contributor.author
Heinz, Andreas
dc.contributor.author
Walter, Henrik
dc.contributor.author
Veer, Ilya M.
dc.date.accessioned
2023-05-09T13:44:51Z
dc.date.available
2023-05-09T13:44:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39295
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39013
dc.description.abstract
Dynamic interactions between brain regions, either during rest or performance of cognitive tasks, have been studied extensively using a wide variance of methods. Although some of these methods allow elegant mathematical interpretations of the data, they can easily become computationally expensive or difficult to interpret and compare between subjects or groups. Here, we propose an intuitive and computationally efficient method to measure dynamic reconfiguration of brain regions, also termed flexibility. Our flexibility measure is defined in relation to an a-priori set of biologically plausible brain modules (or networks) and does not rely on a stochastic data-driven module estimation, which, in turn, minimizes computational burden. The change of affiliation of brain regions over time with respect to these a-priori template modules is used as an indicator of brain network flexibility. We demonstrate that our proposed method yields highly similar patterns of whole-brain network reconfiguration (i.e., flexibility) during a working memory task as compared to a previous study that uses a data-driven, but computationally more expensive method. This result illustrates that the use of a fixed modular framework allows for valid, yet more efficient estimation of whole-brain flexibility, while the method additionally supports more fine-grained (e.g. node and group of nodes scale) flexibility analyses restricted to biologically plausible brain networks.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
task-based fMRI
en
dc.subject
dynamic functional connectivity
en
dc.subject
network neuroscience
en
dc.subject
template-based flexibility
en
dc.subject
community detection
en
dc.subject
dynamical network analysis
en
dc.subject
modular structure
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::500 Naturwissenschaften und Mathematik
dc.title
A fast and intuitive method for calculating dynamic network reconfiguration and node flexibility
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
1025428
dcterms.bibliographicCitation.doi
10.3389/fnins.2023.1025428
dcterms.bibliographicCitation.journaltitle
Frontiers in Neuroscience
dcterms.bibliographicCitation.originalpublishername
Frontiers Media S.A.
dcterms.bibliographicCitation.volume
17 (2023)
dcterms.bibliographicCitation.url
https://doi.org/10.3389/fnins.2023.1025428
refubium.affiliation
Philosophie und Geisteswissenschaften
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1662-453X
refubium.resourceType.provider
DeepGreen