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Dynamic interactions between brain regions, either during rest or performance of

cognitive tasks, have been studied extensively using a wide variance of methods.

Although some of these methods allow elegant mathematical interpretations of

the data, they can easily become computationally expensive or di�cult to interpret

and compare between subjects or groups. Here, we propose an intuitive and

computationally e�cient method to measure dynamic reconfiguration of brain

regions, also termed flexibility. Our flexibility measure is defined in relation to an

a-priori set of biologically plausible brain modules (or networks) and does not rely on

a stochastic data-driven module estimation, which, in turn, minimizes computational

burden. The change of a�liation of brain regions over time with respect to these

a-priori template modules is used as an indicator of brain network flexibility. We

demonstrate that our proposed method yields highly similar patterns of whole-brain

network reconfiguration (i.e., flexibility) during aworkingmemory task as compared to

a previous study that uses a data-driven, but computationallymore expensivemethod.

This result illustrates that the use of a fixed modular framework allows for valid, yet

more e�cient estimation of whole-brain flexibility, while the method additionally

supports more fine-grained (e.g. node and group of nodes scale) flexibility analyses

restricted to biologically plausible brain networks.

KEYWORDS

task-based fMRI, dynamic functional connectivity, network neuroscience, template-based

flexibility, community detection, dynamical network analysis, modular structure

1. Introduction

Over the past decades, a paradigm shift has taken place in studying the human brain,

moving from a local to a more network-based perspective, giving rise to the field of network

neuroscience. This evolution has, in part, been driven by the concept of graphs in math. A

graph (network) consists of a set of vertices (nodes), which are connected by edges (links).

In neuroimaging-based network neuroscience, brain regions identified by any given method

of parcellation are considered the nodes of the network, while links can either be defined

as white matter connections between brain regions (structural networks) or as statistical

interdependencies between the time series of brain regions (functional networks) (Bondy and

Murty, 2008; Fair et al., 2009; Power et al., 2010; Rubinov and Sporns, 2010; Sporns, 2010, 2012;

Fornito et al., 2016).
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Mesoscopic structures or groups formed by interactions between

nodes of a network, called modules, clusters or communities, can

be quantified by a variety of detection methods (Fortunato, 2010).

Nodal interactions are typically represented by an adjacency matrix

(A) of the network, where each element i, j of A (called aij) is

the weight of the connection or strength of interaction between

nodes i and j. Modules are usually determined based on the

general idea of maximizing the number/weight of within-group and

minimizing the number/weight of between-group links. Modules can

then be considered as entities in the network that can be modified

individually without affecting the rest of the network. Modularity

measures have been shown to be useful as a biomarker of disease,

including epilepsy (Chavez et al., 2010), Alzheimer’s disease (Brier

et al., 2014), schizophrenia, bipolar, and major depressive disorder

(Ma et al., 2020). However, brain modularity has also been associated

with normal variation in cognition: Individuals with lower whole-

brain modularity performed better in complex tasks, while those with

higher modularity showed an advantage in simple tasks (Yue et al.,

2017). Whereas the ‘static’ community detection methods employed

in the above-mentioned studies consider the brain’s connectivity

averaged over time (based on only one adjacency matrix per subject

as a single-layer network), other methods have assessed changes

in community structure over time (Meunier et al., 2009; Newell

et al., 2009; Bassett et al., 2011; Calhoun et al., 2014; Alavash et al.,

2015; Sporns and Betzel, 2016). These dynamic approaches take into

account that a node can frequently change its connections depending

on which state the brain is in, both during resting-state (RS) and

during the performance of tasks. Here, changes in modular structure

are captured by a sequence of adjacency matrices (At), thus creating

multi-layer networks. The adjacency matrices are typically calculated

using a sliding-window approach on nodal time series, in which

the window length reflects the time scale of interest (Fornito et al.,

2016). Subsequently, dynamic module detection methods can be

applied to these time-dependent multi-layer networks to not only

characterize changes of modules over time, but also to determine

how nodes change their affiliation [the module/group they belong to]

as a function of time. The latter can be thought of as the flexibility

of a node (Bassett et al., 2011; Betzel and Bassett, 2017) and is

defined based on the consecutive presence of nodes in different

modules over time (Meunier et al., 2010; Calhoun et al., 2014). These

measures of flexibility enable us to track time-dependent changes

and thereby track phenomena of both integration and segregation

in the brain (Bassett et al., 2011; Braun et al., 2015). It offers the

opportunity to study which brain nodes are more likely to change

their affiliation over time and thereby which brain regions are

rather consistently associated with a certain brain module, forming a

backbone for the constantly changing network. For example, a recent

study by Harlalka et al. (2019) suggested higher symptom severity in

autism spectrum disorder to be associated with more connectivity

flexibility in visual and sensorimotor areas during rest. Braun

et al. (2015) demonstrated that individuals with more connectivity

flexibility in frontal cortices have enhanced memory performance

and score better on neuropsychological tests measuring cognitive

flexibility, suggesting that dynamic network reconfiguration may

form a fundamental mechanism underlying executive function. For

a broader discussion on modularity and flexibility findings, see

Karwowski et al. (2019).

A data driven widely used method to calculate brain network

flexibility is based on the Louvain community detection algorithm

by Blondel et al. (2008). This algorithm aims to optimize the variable

Q, initially introduced for a single layer network by Newman (2006),

and later modified for multi-layer networks by others (Mucha et al.,

2010; Bazzi et al., 2016; Vaiana and Muldoon, 2018).

Q =
1

µ

∑

ijsr

[(

Aijs − γs
kiskjs

2ms

)

δsr + δijCjsr

]

δ(cis, cjr) (1)

More specifically: Where A is the Adjacency matrix of the

network, Aijs is the weight of connection between nodes i and j in

layer s. γs is the resolution parameter for layer s, i and j are indices of

nodes, and s and r indices of layers. kis is the degree of node i in layer

s. ms is proportional to the sum of weights in layer s. Cjsr refers to

the connection of node j to itself in different layers. cis is the defined

module/cluster of node i in layer s. Finally, Q captures how good the

grouping is compared to a null-model (here random).

Although, this and similar methods have undoubtedly

contributed to our understanding of brain dynamics, these come

with a cost: Given the random nature of algorithms like Louvain,

the resulting clusters may differ each time the algorithm is run on

the same adjacency matrix. As such, brain modules show variation

within and across participants, which is overcome by running the

algorithm multiple times to reach a consensus on the modular

structure (Lancichinetti and Fortunato, 2012). However, this can be

a computationally expensive process, while the identified modules

may in the end have low biological plausibility or at least cannot be

interpreted straightforwardly.

Here, we introduce a new method to capture nodal flexibility

and brain network reconfiguration using a fast and intuitive method

based on a set of template modules. This offers three main advantages

over the existing methods:

1. It is computationally more efficient and deterministic compared

to the Louvain (and similar) algorithm.

2. It offers high replicability, as it uses the same set of module

templates for all subjects and time scales. This ensures

comparability between subjects and studies, which is one of the

current concerns in the field (Hallquist and Hillary, 2018).

3. It gives researchers the opportunity to choose the best-fitting, or

biologically most relevant module templates for each study.

Although the exact computational complexity of the Louvain

algorithm is not mentioned in the literature, it is suggested to be

essentially linear in the number of links in the graph (Lancichinetti

and Fortunato, 2009).1 But the complexity mentioned is regarding

the one time run of the greedy algorithm. The Louvain algorithm

starts with assigning a distinct community to each network node.

In the initial phase then, there are as many communities as nodes.

It then evaluates the gain in modularity [difference between Q

values for different cases] that would result from removing each

node i from its community and placing it in the community of

j for each of its neighbors j. The i-th node is then placed in the

community with the greatest positive gain. If there is no positive

gain, node i remains in its original community. This process is

repeated until no further improvement is possible, at which point

1 Other implementations of the Newman-Girvan Q optimization are

suggested to be of nlogn complexity (Lancichinetti and Fortunato, 2009;

Blondel, 2022) in networks with a clear modular structure.
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the first phase is finished. This first phase concludes when a local

modularity maximum is reached and no individual move can

improve modularity. The output of the algorithm is dependent on

the order in which the nodes are considered. The second phase of the

algorithm involves the construction of a new network whose nodes

are the communities discovered in the first phase. To accomplish

this, the weights of the links between the new nodes are determined

by adding the weights of the links between nodes in the respective

two communities. In the new network, links between nodes of the

same community result in self-loops for this community. Once

this second phase is complete, the algorithm’s initial phase can be

reapplied to the resulting weighted network again. This 2-phase

process is repeated until there are no more modifications and

maximum modularity is achieved. A partitioning of the network

is achieved through this process of repeating the 2-phase until the

Q cannot be improved, but to find a reliable final representative

partition that doesn’t depend on the order in which the algorithm

chooses the nodes, this whole process is repeated several times until

a consensus is reached (Blondel et al., 2008). On the other hand,

our template-based method, gives the same deterministic value each

time and does not need repetition or a consensus-finding step.

We believe that the deterministic nature of the template-method

can be interpreted as the intrinsic “efficiency factor”. The sum

is always linear to the number of links and we need one time

of adding the weights to find the total weight of connections to

each module.

In this work we describe our proposedmethod in detail and apply

it to a real-life dataset that was previously assessed using a Louvain-

like locally greedy heuristic algorithm (Blondel et al., 2008; Braun

et al., 2015). Compared to the previous work, we demonstrate that

our method is equally successful in capturing a brain reconfiguration

pattern that mimics the stimulation periods of an externally-cued

working memory task, yet in our case can be directly related to

well-known functional brain networks as well.

2. Methods

2.1. Concept and steps

Before going into mathematical detail, let us first explain the

concept behind the method. Consider the brain as a network, in

which each region of the brain (defined by any arbitrary parcellation)

is a node, each co-activation between any two nodes is an edge,

and each node belongs to an a-priori defined set of nodes, termed a

module. As a first step, we consider that each node has an a-priori

affiliation to one of the predefined template modules or in other

words, belongs to an a-prioiri template module. The affiliation is

determined as the template module with which each node has the

largest spatial overlap. Next, the strengths of all edges between each

node and all members of every module are summed. When a node

is more strongly connected to nodes affiliated with another module

FIGURE 1

Schematic overview of the template-based flexibility method. (A) Each node has an a-priori a�liation to a template module, not allowing overlap. In this

paper, we use the Brainnetome atlas for node definition (Fan et al., 2016) and the FIND Lab network templates as predefined modules [http://findlab.

stanford.edu/; Shirer et al., 2012]. Importantly, matrix M, describing the a-priori module a�liation for each node, is predetermined and serves as a

reference. (B) Using a sliding-window approach, an adjacency matrix is constructed for each time window by calculating Pearson correlation coe�cients

between the time series of all possible pairs of nodes. Then, for each node and time window the reference module receiving the highest normalized

connection weight will serve as the new modular a�liation for that node in that time window. (C) Last, the number of a�liation changes between

a�liation vector in t and its successive vector in t+ 1 is defined as the flexibility Ft of the network between two time points. The average of Ft across

participants (called Ft) can be plotted for all consecutive time points (an example presented later in Figure 3).
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than to nodes of its own predefined module, then this node will

receive another affiliation than its a-priori one. This can now be

extended to a dynamic scenario, in which node affiliations can be

determined for a range of consecutive time points. Some nodes might

change their affiliation over time, while others do not. The ratio of

nodes changing affiliation with respect to all nodes is what we are

interested in. We understand this ratio as a measure of flexibility of

the brain. In other words, the more nodes switch affiliation between

consecutive time points, the more flexibility in network dynamics we

assume. See Figure 1 for a summary of these steps.

The steps to calculate this flexibility measure are listed below

in detail:

1. An a-priori affiliation is assigned to each node to form the

following matrix M:

M =



















0 0 0 1 0 . . . 0

0 1 0 0 0 . . . 0

.

.

.

1 0 0 0 0 . . . 0



















Nreg×Nmod

(2)

Where Nreg is the number of regions (nodes) and Nmod number of

a-priori modules. Each row of this matrix belongs to a node and, in

the first-approximation case in this paper, has only one non-zero

element that indicates the a-priori modular affiliation of the node.

For example, in row 1 the fourth column is 1, which means that

the first node has an a-priori affiliation to template module 4.

Note that we assign all nodes that do not show any overlap

with the templatemodules to a last, artificial module to not exclude

these nodes in calculating the flexibility metric.

2. Next, for each node we extract the mean time series across

all volumes of the fMRI scan. We then divide our time-series

into smaller windows using a sliding-window approach. For

each time window, an adjacency matrix is constructed using

Pearson correlation coefficients between all possible node pairs.

The adjacency matrix at time-window t is defined as At of shape

Nreg × Nreg :

At =

[

Weighted Adjacency Matrix

of Time Window t

]

(3)

3. Now, we want to calculate how each node is connected to the

nodes that are the predefined members of each of the template

modules, as defined inM. To this end, we sum the absolute values

of all the weights from one node to all the nodes affiliated to each

of the modules, so that each node has Nmod [in our subsection 2.2

analysis: 15] different values (one weighted sum for links to each

module), indicating the strength of its links with the predefined

members of each of the template modules. In mathematical terms,

we calculate the matrix S′ as follows:

S′Nreg×Nmod
= |A|t ×M (4)

where |A|t matrix elements are the absolute values of At elements

and the matrix has the dimension Nreg × Nreg . Row i of S′ belongs

to the region i and each column j shows the sum of absolute

connection weights of i to the members of j-th module. As the

predefined modules differ in size, the S′ matrix elements are

FIGURE 2

Task and signals. (A) Example of the N-back working memory task with a 0-back and 2-back condition, during which participants were asked to choose

the value that was either shown at the current step or 2 steps ago, respectively. (B) Four blocks of each condition were presented in alternated fashion for

30 s. (C) After preprocessing, mean time courses were extracted from 246 Brainnetome atlas regions (Fan et al., 2016). (D) Windowed time series were

extracted using a sliding-window approach, moving a window of 15 time points over the time series one volume at a time.
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then normalized to the number of regions affiliated by template

definition to the modules, creating a new matrix called S [dividing

each matrix element S′ij by the number of regions affiliated to

the jth template module]. Importantly, to be able to compare the

elements of S, we normalize it in a way that the sum of each

row is one. This normalization step has no effect on the output

of the next steps but is rather to increase the interpretability at

this stage. The normalized numbers thus represent which portion

of each node’s connections is to which module. We call this new

matrix, S.

SNreg×Nmod
= Normal(SNreg×Nmod

) (5)

4. With S, we have the ratio of affiliations to each module calculated

for all nodes. From these, the strongest module affiliation per node

is chosen as the winner which together form an affiliation vector

for time window t; we call this vector �t :

�t =



























ArgMax(S1∗)

ArgMax(S2∗)

ArgMax(S3∗)

ArgMax(S4∗)

..

ArgMax(Si∗)

. . .

ArgMax(SNreg∗)



























Nreg×1

(6)

where ArgMax(Si∗) points to the name/number (argument) of

the winner module in row i of matrix S.

5. Following steps 2-4 for consecutive time windows, we calculate

one�t for each window t. The flexibility of the network denoted by

F is then defined as the ratio of regions that change their affiliation

from one window to the next to the total number of network

regions, or:

Ft = 1−
1

Nreg

N
∑

i=1

δ
ωt
i ,ω

t−1
i

, (7)

TABLE 1 Region a-priori A�liation, columns marked “R” are region numbers and “M” columns are a-priori modular a�liations.

R M R M R M R M R M R M R M R M R M R M

1 1 26 11 51 6 76 2 101 15 126 13 151 9 176 4 201 5 226 3

2 1 27 7 52 11 77 1 102 15 127 13 152 9 177 9 202 5 227 3

3 7 28 11 53 12 78 8 103 13 128 14 153 4 178 4 203 5 228 3

4 11 29 14 54 12 79 2 104 13 129 14 154 4 179 4 204 5 229 3

5 4 30 14 55 12 80 6 105 5 130 14 155 12 180 1 205 5 230 3

6 4 31 14 56 12 81 7 106 5 131 8 156 12 181 13 206 5 231 3

7 1 32 11 57 12 82 15 107 14 132 8 157 2 182 13 207 9 232 3

8 1 33 6 58 12 83 6 108 14 133 14 158 2 183 1 208 9 233 3

9 1 34 11 59 12 84 15 109 15 134 14 159 14 184 1 209 14 234 3

10 1 35 6 60 12 85 6 110 15 135 13 160 14 185 4 210 14 235 8

11 1 36 6 61 2 86 6 111 13 136 13 161 12 186 4 211 15 236 8

12 1 37 1 62 2 87 6 112 13 137 7 162 12 187 4 212 15 237 4

13 4 38 1 63 14 88 6 113 13 138 11 163 8 188 4 213 15 238 4

14 4 39 6 64 14 89 15 114 13 139 14 164 15 189 5 214 15 239 8

15 1 40 1 65 13 90 15 115 15 140 14 165 1 190 5 215 4 240 3

16 11 41 4 66 8 91 14 116 15 141 8 166 1 191 10 216 4 241 4

17 7 42 4 67 12 92 14 117 15 142 11 167 1 192 10 217 4 242 3

18 11 43 6 68 12 93 15 118 15 143 6 168 1 193 5 218 4 243 3

19 1 44 11 69 15 94 15 119 13 144 6 169 8 194 10 219 3 244 3

20 1 45 15 70 15 95 7 120 15 145 8 170 8 195 10 220 3 245 3

21 1 46 15 71 2 96 15 121 6 146 8 171 15 196 5 221 3 246 3

22 11 47 4 72 2 97 14 122 6 147 13 172 15 197 10 222 3

23 7 48 4 73 2 98 14 123 6 148 13 173 1 198 10 223 8

24 11 49 4 74 2 99 7 124 6 149 13 174 1 199 5 224 15

25 14 50 15 75 6 100 15 125 13 150 13 175 4 200 5 225 3
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where ω denotes an element of vector �. The Kronecker delta

δωs
i ,ω

t
j
is 1 if ωs

i = ωt
j and 0 otherwise. The

∑

then counts the

number of nodes that did not change their affiliation between

windows t and t + 1. Note that as a side-product of calculating �,

we can output a vector describing the affiliations over time for each

node separately as well by making a vector of the same element

in �t=1,..,Nt :

[

ωt=1
i ,ωt=2

i ,ωt=3
i . . . ,ω

t=Nt
i

]

1×Nt
(8)

WhereNt is the total number of time windows. This output can be

used for further region-specific analysis.

6. Where we apply the method to real-life data (see subsection 2.2)

we also calculate the average flexibility over time for a sample

(cohort of subjects), Ft , by simply summing the flexibility over all

participants and divide it by the sample size (Nsub).

2.2. Application on a previously studied
dataset

In our application study, we used 331 participants of the 344

participants included in Braun et al. (2015): Thirteen subjects

were excluded due to scanning artifacts, exceeding movement or

insufficient image quality. Functional MRI data were acquired at

three sites during performance of an N-back task: the Life and Brain

Center of the University of Bonn, the Central Institute of Mental

Health Mannheim, and Charité - Universitätsmedizin Berlin. The

study was approved by the Medical Ethics Committee of the three

study sites and all participants provided written informed consent.

At all sites, a Siemens Trio 3T MRI scanner (Siemens Healthcare,

Erlangen, Germany) was used with identical sequences: gradient-

echo EPI, 28 slices, slice thickness 4mm (1mmgap), field of view 192 x

192 x 140 mm, acquisition matrix 64 x 64, TR (repetition time) 2s, TE

(echo time) 30 ms, flip angle 80◦. The task was presented in a blocked

fashion. Four blocks of 0-back and 2-back each (30s duration)

were alternated, starting with the 0-back condition. Participants

were asked to either press the button corresponding to the number

shown on the screen (0-back) or the number that was shown 2

steps ago (2-back). See Figure 2 for more information on the task.

Python packages nilearn, Scikit-learn and matplotlib are used for

visualization purposes in this manuscript (Hunter, 2007; Pedregosa

et al., 2011). Standard preprocessing was conducted using SPM8

(Penny et al., 2011) and included motion correction (participants

with > 3mm translation and > 1.7◦ rotation between volumes were

excluded), slice-time correction, spatial smoothing with a FWHM

of 9 mm, high-pass temporal filtering with a 128s cutoff, and

normalization to theMontreal Neurological Institute (MNI) template

space with 3 mm isotropic voxel size. A detailed description of

data acquisition and preprocessing is provided in Esslinger et al.

(2009). Mean time-courses of the 246 BrainnetomeAtlas regions (Fan

et al., 2016) were extracted from the preprocessed data of the 331

subjects. In line with Braun et al. (2015), a 15-volume window length

with 14 volumes overlap was chosen for the sliding-window analysis

(Figures 2C, D), generating in total 114 windows for each subject.

For every window, we calculated an adjacency matrix using Pearson

correlation coefficients between all possible pairs of the 246 regions

mean time series [using scipy.stats.pearsonr Virtanen et al. (2020)].

Considering that the N-back working memory task consisted of 30 s

alternating blocks of 0-back and 2-back, the 15-volume window (30 s

TABLE 2 Findlab-based modules (Shirer et al., 2012) used in our application

section.

Number Name

Module 1 Anterior Salience

Module 2 Auditory

Module 3 Basal Ganglia

Module 4 Dorsal Default Mode Network (dDMN)

Module 5 High Visual

Module 6 Language

Module 7 Left Executive Control (LECN)

Module 8 Posterior Salience

Module 9 Precuneus

Module 10 Prim Visual

Module 11 Right Executive Control (RECN)

Module 12 Sensorimotor

Module 13 Ventral Default Mode Network (vDMN)

Module 14 Task Positive

Module 15 Undefined

length) allows for one window purely reflecting a single condition

block. For more information on selection of the window length see

Braun et al. (2015) and Leonardi and Ville (2015).

The a-priori modules (Matrix M) were selected based on 14 well-

described functional connectivity template networks (modules) in

Shirer et al. (2012) by the FIND lab (http://findlab.stanford.edu/). As

described before, a 15th (artificial) module was added comprising

all atlas regions that did not overlap with any of the 14 template

networks. The a-priori affiliations of all atlas regions can be found

in Table 1 and the labels of the FIND lab templates in Table 2.

To obtain a broader view of the meso-scale dynamics, the

modular allegiancematrix T and integrationmatrix R were calculated

using the methods from Braun et al. (2015). Each element ti,j of

modular allegiance matrix T shows the ratio of windows where node

i and j were present in the same module relative to all windows. To

calculate the T for each condition, we separated windows with 80% of

their time-points in one condition and ignored the others.

To calculate the integration matrix R with elements rk,l, which

show the strength of co-working between modules k and l, when we

have Nmod modules {M1,M2, . . .MNmod
}, we first use all the T matrix

elements [link between two regions] with one end (region) in module

k and the other end (region) in module l to extract I matrix elements

(ik,l). It can be written as:

ik,l =

∑

i∈Mk ,j∈Ml
Ti,j

|Mk||Ml|
, (9)

where k and l are two modules, |Mk| shows the size of module

Mk. Then we normalize the I elements with division by internal

connections of both modules and call the resulting elements elements

of matrix R:

rk,l =
ik,l

√

ik,kil,l
, (10)

R is the integration matrix.
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FIGURE 3

Comparison of flexibility generated by the generalized Louvain-like locally greedy heuristic algorithm (Blondel et al., 2008; Jeub et al., 2022) and the

template-based method during an N-back working memory task. (A) Flexibility plot from Braun et al. (2015) illustrating the probability that a brain region

changes its modular allegiance between two consecutive windows in a sample of 344 healthy subjects. The original plot is used with permission of the

publisher. (B) Flexibility plot generated by the template-based method. Here, the flexibility number in each time-window is the fraction of regions that

change their a�liation from one time window to the next (i.e., the number of changed regions divided by the total number of nodes). The plots are

generated using a subset of 331 subjects from the same cohort as used in Braun et al. (2015). Note that in both plots a time window covers 15 EPI

volumes with a TR of 2 s, corresponding to a window length of 30 s. The window was shifted with one volume at a time, allowing for 14 EPI volumes

overlap between consecutive windows, which yielded 114 windows in total.

FIGURE 4

Brainnetome atlas brain regions switching. Number of a�liation switches between consecutive windows for regions of the Brainnetome Atlas, averaged

across all subjects and normalized to the most frequently switching node to yield values between 0 and 1. The visualized regions are those with values

higher than 0.7.
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FIGURE 5

Findlab brain areas switching. (A) Average number of a�liation switches between consecutive windows for each FIND lab template network, averaged

across all subjects. Abbreviations are listed in Table 2. (B) Illustration of the four template networks for which its constituent nodes demonstrated the

highest flexibility [http://findlab.stanford.edu/; Shirer et al. (2012)]. See Figure 6 for more statistics.

3. Results

Figure 3A shows the N-back flexibility pattern across all nodes

from Braun et al. (2015), while Figure 3B shows the pattern generated

by our method when applied to the same dataset (331/344 subjects

of the same sample). Similar to Figure 3A, the peaks illustrate

maximum flexibility of the brain during performance of both the 0-

and 2-back condition. In contrast, the transitions between the two

task conditions coincide with troughs when applying our method,

whereas Braun et al. (2015) described additional, yet smaller peaks

during these transition phases when using the generalized Louvain

algorithm. On average, higher flexibility is observed during the 2-

back than 0-back blocks, although the difference is relatively small

(t = −2.9, p = 0.03).

In addition to calculating flexibility across all nodes, we can use

the information captured in the fifth step to describe the affiliation

changes of each individual node. This allows us to have a closer look

at which nodes switch their affiliation over timemost frequently, or at

how often the a-priori constituents of each of the template networks

switch their affiliation. Figure 4 illustrates howmany times each node

(Brainnetome regions in our analysis) switches its affiliation between

two consecutive windows. Note that the number of switches was

normalized to the number of switches performed by the node that

switched most frequently, forcing the latter node to have a value of 1

and the other nodes to have a value between 0 and 1. Nodes within the

prefrontal cortex predominantly show affiliation changes over time

during execution of the N-back task. This is in agreement with the

previous findings (Owen et al., 2005; Cao et al., 2014; Braunlich et al.,

2015; Minamoto et al., 2015).

One level coarser at the module level, we can look at the

average switching ratio of template modules. The boxplots in Figure 5

demonstrate for each of the FIND lab template modules how

often their a-priori defined constituent nodes on average switch

their modular affiliation over time across participants. Additional

statistical analysis for modules in Figure 5 is provided in Figure 6.

Constituent nodes of the default mode network (DMN), salience

network (SN), left and right executive control network (L/RECN),

and language network seemingly switch their affiliation most often

during execution of the N-back task.

Figure 7 shows the result of modular allegiance and integration

analysis. We observe a general increase in integration values

in 2-back compared to 0-back except for three modules. This

overall increase in integration is in agreement with previous

findings (Finc et al., 2020).
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FIGURE 6

Additional statistics for Figure 5. Independent t and p values between boxplot modules in Figure 5, shown as [t-value, p-value]. The last column called

“Comp. w Rest” calculates the t-test between the specific module and the whole brain. For visualization purpose the table is cut to two parts.

4. Discussion

In this work we introduce a new method to assess flexibility

in analyses of dynamic functional connectivity. In the application

section we set out to compare our method against the currently

most used data-driven method described in Braun et al. (2015),

in which the computationally more expensive generalized Louvain

algorithm was applied to derive the modular structure of the data

(Blondel et al., 2008; Mucha et al., 2010; Bassett et al., 2011; Jeub

et al., 2022). See Figure 8 for a schematic comparsion of steps in

standard vs. template flexibility calculations. We demonstrate that

our method is able to reveal a flexibility pattern during the N-back

working memory task that is highly similar to the pattern found in

Braun et al. (2015). The most notable difference between the results

obtained with ourmethod and the Louvain algorithmwas the absence

of the small increase in flexibility during the transition of the 0-

and 2-back blocks. Braun et al. (2015) interpret this to reflect “dual-

task” performance. We suggest an alternative explanation based on

the current results: increased flexibility may be needed for switching

tasks at the start of each new condition block (shown as a delayed

peak in the middle of the marked blocks), while less flexibility

may be needed during prolonged execution of the task in each

block (shown as a delayed trough exactly in between blocks). As

such, the periods of lower flexibility may show the preferred brain

configuration for the execution of the task blocks. A further more

theoretical analysis of a simulated BOLD signal with block induced

inputs might be helpful in interpreting the dual-task vs. no-dual-task

hypothesis.

As has been shown abundantly in the literature, the prefrontal

cortex plays an important role in the performance of working-

memory tasks (Owen et al., 2005; Cao et al., 2014; Braunlich et al.,

2015; Minamoto et al., 2015). Therefore, it is not surprising that

we found nodes in the prefrontal cortex to show the most flexible

behavior during execution of the N-back task. Moreover, at the

modular level we see the highest flexibility in nodes that have an a-

prori affiliation to the DMN, SN, L/RECN and languagemodules. The

DMN is known to have an antagonistic relation with fronto-parietal

networks, such as the L/RECN: when the latter is more active during

cognitively demanding tasks (such as the N-back) the DMN is less

active (Fox et al., 2005). Interestingly, a key role has been assigned

to the SN in allocating neural resources between more internally

(DMN) or externally (ECN) oriented processes (Uddin et al.,

2011). Taken together, we see these results as further proof of our

method’s validity.
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FIGURE 7

Modular allegiance and integration. Diagonal elements of the matrices are set to be zero. (A) Modular allegiance of the two conditions 2-back and

0-back; to calculate a T matrix for one condition, we used only the windows with 80% of their time-points in that condition. (B) Integration matrix for

0-back and 2-back. (C) Change in the integration values R2−back − R0−back (left plot) and sum of rows (from the left plot matrix) as each modules

integration value (right plot).

We discussed above how our method could be used to assess

flexibility. That is, both on the network (module) level and

at the regional (node) level, thereby extending the inferential

potential compared to the other widely-used algorithms. However,

our analytical procedure also offers possibilities for more fine-

grained investigations of modular affiliations. In the description of

our method and application analysis we determined the modular

affiliation for a particular node and window as the module with which

the node demonstrated the strongest connectivity in the affiliation

vector. Although this is arguably the easiest and most pragmatic
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FIGURE 8

Schematic steps to calculate dynamical flexibility. The time series are extracted from brain scans. Selected sliding windows are used to generate

adjacency/connectivity matrices. The groups/clusters/modules are found in each matrix∗ using a feasible clustering method. In this step, the method of

choice can be a well-known method like the optimization of Newman’s modularity Q using greedy Louvain algorithm or it can be our template-based

method that considers the a-priori information about brain as pre-assumption. Finally the assigned a�liations in windows are compared and the

di�erences are found. *In some methods, di�erent sliding window matrices are put together to make a multi-layer network and then an adjusted version

of modularity optimization is employed to find module through all layers.

choice, it would also be possible to use the weighted affiliation

with each of the template modules in the affiliation vector [Method

section, step 3] to assess flexibility. Such a weighted approach may

ultimately prove to be even more informative in characterizing brain

flexibility. Another limitation of our method appears in the limits

of a-priori module sizes. If the template modules are significantly

different in size, a single division to the size of each module is not

enough to account for the difference in the size of modules. In

theory, one can define two a-priori modules of size 1 and Nreg − 1,

but such a template definition would result in a flexibility which

is very sensitive to the connection weights from that one single

node. In spite of this, additional analysis revealed a comparable but

not easily interpretable flexibility result if the nodes are randomly

assigned to another similar-size a-priori module set and if, in a

simplified case, the Pearson distance between different windows is

used as a measure of flexibility [see chapter 6 of Chinichian (2022) for

details]. This demonstrates that, in a larger context, the connectivity

changes between successive windows can be tracked even before

using a template. The researcher’s choice of template provides an

additional degree of freedom to find a suitable match for the research

question. It allows researchers to focus on a subset of nodes that are

relevant relative to the rest of the network, but it also introduces

the limitation that results from different template selections may

not be easily comparable. We recommend that every report on the

template flexibility should include the exact template details [similar

to Table 1] to allow for a fair interpretation of the results.

The current manuscript, focuses on the block-designed task

fMRI which provides a fairly easy-to-interpret and comprehensible

application case. A further investigating of resting-state fMRI and the

changes in the flexibility during rest could provide more insight to

the different aspects of this method. A study of resting-state fMRI

from 95 subjects meeting criteria for Major Depressive Disorder

and/or common anxiety disorders from the Netherlands Study of

Depression and Anxiety (NESDA) is in preparation by a collaborator

team (Dickhoff, 2022).

In conclusion, the method proposed in the current study is able

to generate flexibility results that are highly comparable to the results

obtained with a more sophisticated data-driven method. Besides

having a much higher computational efficiency, our method also

promotes replicability across different samples and studies through

the use of biologically plausible template modules. We believe that

our approach can be a feasible choice for researchers aiming to study

dynamical reconfiguration at multiple scales of the brain, be it nodes,

modules, or the brain as a whole.
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