A precise structural determination of supramolecular architectures is a non-trivial challenge. This daunting task can be made even more difficult when interlocked species are to be analysed having macrocycles covalently equipped with a thread as repeating units, such as molecular lassos and daisy chains. When such functionalized macrocycles are included as scaffolds, different products having analogous NMR spectra as well as dynamic libraries can be obtained. Furthermore, if control over the motion of the parts relative to each other is to be achieved, a full understanding of the machinery's operation mechanism requires detailed insight into the structures involved. This understanding also helps designing improved synthetic molecular machines. Diffusion-ordered NMR spectroscopy and ion-mobility MS techniques are ideal tools to study such compounds in depth. This review covers recent examples on the use of the above-mentioned techniques to characterize these interlocked architectures.