dc.contributor.author
Codenotti, Giulia
dc.contributor.author
Santos, Francisco
dc.contributor.author
Schymura, Matthias
dc.date.accessioned
2023-03-27T08:05:23Z
dc.date.available
2023-03-27T08:05:23Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38574
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38290
dc.description.abstract
We explore upper bounds on the covering radius of non-hollow lattice polytopes. In particular, we conjecture a general upper bound of d/2 in dimension d, achieved by the “standard terminal simplices” and direct sums of them. We prove this conjecture up to dimension three and show it to be equivalent to the conjecture of González-Merino and Schymura (Discrete Comput. Geom. 58(3), 663–685 (2017)) that the d-th covering minimum of the standard terminal n-simplex equals d/2, for every n≥d. We also show that these two conjectures would follow from a discrete analog for lattice simplices of Hadwiger’s formula bounding the covering radius of a convex body in terms of the ratio of surface area versus volume. To this end, we introduce a new notion of discrete surface area of non-hollow simplices. We prove our discrete analog in dimension two and give strong evidence for its validity in arbitrary dimension.
en
dc.format.extent
47 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Covering radius
en
dc.subject
Discrete surface area
en
dc.subject
Lattice polytopes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
The Covering Radius and a Discrete Surface Area for Non-Hollow Simplices
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2023-03-24T16:03:56Z
dcterms.bibliographicCitation.doi
10.1007/s00454-021-00330-3
dcterms.bibliographicCitation.journaltitle
Discrete & Computational Geometry
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
65
dcterms.bibliographicCitation.pageend
111
dcterms.bibliographicCitation.volume
67
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00454-021-00330-3
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0179-5376
dcterms.isPartOf.eissn
1432-0444
refubium.resourceType.provider
DeepGreen