Background: Ulcerative colitis (UC) has a relapsing and remitting pattern, wherein the underlying mechanisms of the relapse might involve an enhanced uptake of luminal antigens which stimulate the immune response. The tricellular tight junction protein, tricellulin, takes charge of preventing paracellular passage of macromolecules. It is characterized by downregulated expression in active UC and its correct localization is regulated by angulins. We thus analyzed the tricellulin and angulin expression as well as intestinal barrier function and aimed to determine the role of tricellulin in the mechanisms of relapse.
Methods: Colon biopsies were collected from controls and UC patients who underwent colonoscopy at the central endoscopy department of Campus Benjamin Franklin, Charite - Universitatsmedizin Berlin. Remission of UC was defined basing on the clinical appearance and a normal Mayo endoscopic subscore. Intestinal barrier function was evaluated by electrophysiological and paracellular flux measurements on biopsies mounted in Ussing chambers.
Results: The downregulated tricellulin expression in active UC was recovered in remission UC to control values. Likewise, angulins were in remission UC at the same levels as in controls. Also, the epithelial resistance which was decreased in active UC was restored in remission to the same range as in controls, along with the unaltered paracellular permeabilities for fluorescein and FITC-dextran 4 kDa.
Conclusions: In remission of UC, tricellulin expression level as well as intestinal barrier functions were restored to normal, after they were impaired in active UC. This points toward a re-sealing of the impaired tricellular paracellular pathway and abated uptake of antigens to normal rates in remission of UC.