dc.contributor.author
Kirchhof, Jan N.
dc.contributor.author
Bolotin, Kirill
dc.date.accessioned
2023-03-03T09:27:34Z
dc.date.available
2023-03-03T09:27:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38183
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37900
dc.description.abstract
We present a tunable phononic crystal which can be switched from a mechanically insulating to a mechanically conductive (transmissive) state. Specifically, in our simulations for a phononic lattice under biaxial tension (σxx = σyy = 0.01 N m−1), we find a bandgap for out-of-plane phonons in the range of 48.8–56.4 MHz, which we can close by increasing the degree of tension uniaxiality (σxx/σyy) to 1.7. To manipulate the tension distribution, we design a realistic device of finite size, where σxx/σyy is tuned by applying a gate voltage to a phononic crystal made from suspended graphene. We show that the bandgap closing can be probed via acoustic transmission measurements and that the phononic bandgap persists even after the inclusion of surface contaminants and random tension variations present in realistic devices. The proposed system acts as a transistor for MHz-phonons with an on/off ratio of 105 (100 dB suppression) and is thus a valuable extension for phonon logic applications. In addition, the transition from conductive to isolating can be seen as a mechanical analogue to a metal-insulator transition and allows tunable coupling between mechanical entities (e.g. mechanical qubits).
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Condensed-matter physics
en
dc.subject
Nanoscience and technology
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Mechanically-tunable bandgap closing in 2D graphene phononic crystals
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
10
dcterms.bibliographicCitation.doi
10.1038/s41699-023-00374-4
dcterms.bibliographicCitation.journaltitle
npj 2D Materials and Applications
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41699-023-00374-4
refubium.affiliation
Physik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2397-7132