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Mechanically-tunable bandgap closing in 2D graphene
phononic crystals
Jan N. Kirchhof 1✉ and Kirill I. Bolotin 1✉

We present a tunable phononic crystal which can be switched from a mechanically insulating to a mechanically conductive
(transmissive) state. Specifically, in our simulations for a phononic lattice under biaxial tension (σxx= σyy= 0.01 Nm−1), we find a
bandgap for out-of-plane phonons in the range of 48.8–56.4 MHz, which we can close by increasing the degree of tension
uniaxiality (σxx/σyy) to 1.7. To manipulate the tension distribution, we design a realistic device of finite size, where σxx/σyy is tuned by
applying a gate voltage to a phononic crystal made from suspended graphene. We show that the bandgap closing can be probed
via acoustic transmission measurements and that the phononic bandgap persists even after the inclusion of surface contaminants
and random tension variations present in realistic devices. The proposed system acts as a transistor for MHz-phonons with an on/off
ratio of 105 (100 dB suppression) and is thus a valuable extension for phonon logic applications. In addition, the transition from
conductive to isolating can be seen as a mechanical analogue to a metal-insulator transition and allows tunable coupling between
mechanical entities (e.g. mechanical qubits).
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INTRODUCTION
Phononic crystals (PnCs) are artificial structures in which the
periodic variation of material properties (e.g. stiffness, mass, or
tension) give rise to a phononic band structure—in analogy to
Bloch waves in crystalline solids on the atomic scale. In contrast to
conventional solids, the parameters of the band structure can be
broadly controlled via artificial patterning. Because of that, PnCs
allow realising analogues of fundamental solid state physics
phenomena over a very large range of sizes (10 nm–100m) and
frequencies (Hz–THz)1,2. This ranges from quantum entangle-
ment3,4 to topological states5,6 and negative refraction7. The
ability to engineer phononic spectra gave rise to applications such
as phononic shielding in ultracoherent mechanical resonators8–11,
wave guiding12,13 or thermal management14. Due to the much
lower propagation speed of phonons compared to photons or
electrons, PnCs are also promising candidates for quantum
information technology based on guiding and storing mechanical
motion, especially on length scales too small for photonic
approaches6,15–18. Most of these applications and phenomena
rely on phononic bandgaps, the range of frequencies where no
phonons are allowed and mechanical motion is heavily damped.
The velocities of all phonons in a material depend on its tension

σ. In conventional rigid PnCs, e.g. those fabricated using silicon
nitride membranes (SiNx), the built-in tension is determined
during the growth step and cannot be tuned. As a result, it
becomes challenging to couple a PnC to an external system, for
example for processing and storing of quantum information19–21.
In contrast, it has been recently demonstrated that the tension in
much more flexible two-dimensional (2D) materials can be
dynamically controlled by applying electrostatic pressure via an
external gate electrode22–25. The resulting tunable (biaxial) tension
allows broad tunability of the bandgap centre frequency23.
Nevertheless, the hierarchy of the bands in the systems explored
so far has not been affected by tension—i.e. a gapped system
remained gapped at any tension level. The precise control of the

bandgap size and thus the coupling strength between mechanical
entities remains elusive.
Here, we show that the application of uniaxial tension to a PnC

(in contrast to biaxial tension studied previously) changes the
band hierarchy. Specifically, for a 2D phononic lattice patterned
into a suspended graphene membrane under biaxial tension (σxx/
σyy= 1), we observe a bandgap for out-of-plane phonons at any
tension (e.g. 48.8–56.4 MHz at σ= 0.01 Nm−1), which disappears
completely when the degree of tension uniaxiality (σxx/σyy)
reaches 1.7. This can be seen as the observation of a mechanical
analogue to a metal-insulator transition. Of course, the analogy is
not complete. The chemical potential for the phononic system is
zero rather than falling into the gap, as is the case for electrical
insulators, which are described by the Fermi-Dirac statistics. Also,
the analogy is only applicable to out-of-plane modes. These
modes are especially relevant in phononic crystals made from 2D
materials as they are easy to excite and detect. Nevertheless, the
transition from a gapped to non-gapped phononic crystal shows
many similarities to an actual metal-insulator transition in terms of
transfer of energy and localisation of modes (see Supplementary
Note 8). To control σxx/σyy, we propose a simple experimental
geometry based on electrostatic gating and show that bandgap
closing can be reached in experimentally feasible devices, which
we probe via acoustic transmission studies. Our simulations show
that applying a small gate voltage of ~8 V to the suspended
graphene PnC is sufficient to close the phononic bandgap. For
frequencies within the bandgap region, the system functions as a
mechanical transistor with an on/off ratio of 105 (suppression of
100 dB) and can be used in phonon logic circuits. Furthermore, the
ability to dynamically control the bandgap size allows to realise
tunable coupling strength between mechanical entities e.g. two
mechanical resonators acting as qubits. Finally, we investigate the
challenges associated with the fabrication of 2D materials. We find
that the mass of contaminants on top of the device must be
smaller than ~4 times the weight of the suspended graphene and

1Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany. ✉email: jan.kirchhof@fu-berlin.de; kirill.bolotin@fu-berlin.de

www.nature.com/npj2dmaterials

Published in partnership with FCT NOVA with the support of E-MRS

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41699-023-00374-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41699-023-00374-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41699-023-00374-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41699-023-00374-4&domain=pdf
http://orcid.org/0000-0001-8576-4787
http://orcid.org/0000-0001-8576-4787
http://orcid.org/0000-0001-8576-4787
http://orcid.org/0000-0001-8576-4787
http://orcid.org/0000-0001-8576-4787
http://orcid.org/0000-0003-1821-3429
http://orcid.org/0000-0003-1821-3429
http://orcid.org/0000-0003-1821-3429
http://orcid.org/0000-0003-1821-3429
http://orcid.org/0000-0003-1821-3429
https://doi.org/10.1038/s41699-023-00374-4
mailto:jan.kirchhof@fu-berlin.de
mailto:kirill.bolotin@fu-berlin.de
www.nature.com/npj2dmaterials


that the relative tension variation in the graphene must be smaller
than 40% to observe a clear bandgap and its closing.

RESULTS
PnC design
For the design of our tunable 2D phononic system we choose a
honeycomb lattice (lattice constant a) of holes (diameter d), which
provides a relatively broad and robust phononic bandgap for out-
of-plane modes, while leaving a large fraction of the material
untouched. The latter is crucial for making a PnC from fragile 2D
materials. The honeycomb lattice also features an indirect
phononic bandgap, which allows selective tuning of phononic
bands via uniaxial tension, as we will see later. We select graphene
as a suitable material for our PnC as it is the most conductive26,27

and the strongest member of the family of 2D materials28. Our
results are also applicable to other conductive 2D materials. The
phononic pattern shows the same symmetry as the atomic lattice
structure of graphene, with the difference that in our approach
the unit cell is much larger and contains ~4·107 carbon atoms. We
consider a free-standing PnC to allow mechanical tuning via out-
of-plane pressure. Fabrication of such devices has recently been
demonstrated by He-Ion beam milling23,29,30. To obtain the
phononic band structure, we start by performing finite element
method (FEM) simulations of the tension distribution within the
conventional unit cell of the honeycomb lattice (Fig. 1a, top). We
find tension hotspots in the thin ribbons and relaxed regions in
the centre of the unit cell. This redistribution of tension occurs
when holes are cut into the initially uniform membrane. In a next
step, we use the first Brillouin zone (Fig. 1a, bottom) to calculate
the phononic band structure along the high symmetry lines for an
infinite lattice, as shown in Fig. 1b for a= 1 µm, d/a= 0.5 and a
reasonable initial biaxial tension of σxx= σyy= 0.01 Nm−1 23,31,32.
For out-of-plane modes (solid lines) we find a bandgap between
48.8 and 56.4 MHz (blue shaded), in agreement with previous
work23,30. These modes are qualitatively comparable to atomic
scale flexural (ZA) phonon modes in graphene, but at much lower
frequencies and for much smaller wave vectors. The entire
phononic lattice behaves like a thin membrane with vibrational
mode frequencies f determined by the built-in tension (f � ffiffiffi

σ
p

),
that also results in a linear dispersion for the flexural modes,
instead of the quadratic behaviour expected for an unstrained 2D
material33,34. Also, in agreement with previous work, we find that
an uniform increase in tension (σxx/σyy= 1) leads to monotonic
upscaling of both the top of valence (fVB) and bottom of

conduction band (fCB) frequencies as shown in Fig. 1e (red). Here,
the centre frequency of the bandgap follows a square root
behaviour vs. tension, and the relative bandgap size ( fCB�fVB

ðfCBþfVBÞ=2)
remains constant.

Bandgap closing for highly uniaxial tension
Our next goal is to show that we can use uniaxial tension (unlike
biaxial tension) to control the relative bandgap size and even
completely close it. The phononic bandgap of our honeycomb
lattice is indirect with the conduction band minimum fCB, located
at the Γ point in momentum space and the valence band
maximum fVB, at a point along the ΓX line (Fig. 1b). Critically,
uniaxial tension, in contrast to biaxial tension, produces different
frequency scaling of the band structure at different points of the
Brillouin zone. With increasingly uniaxial tension, fVB strongly
upshifts in frequency while fCB is barely tension-dependent. As a
result, the indirect bandgap of the phononic lattice acquires a
strong tension-dependence. To quantify these changes, we
determine the average tension components (after redistribution
upon phononic pattering) σij ¼ <σij> and use the ratio σxx/σyy as a
metric for tension uniaxiality. For the honeycomb lattice with its
initial tension distribution (as introduced above), σxx/σyy= 1. For
an increased σxx/σyy= 1.35, we find increased tension in the areas
stretched in the x direction (Fig. 1c, inset). This is accompanied by
a much more pronounced upshift of fVB compared to fCB and thus
a reduced bandgap size (Fig. 1c). To give an intuitive under-
standing of this scaling behaviour, we look at the spatial shape of
modes corresponding to fVB and fCB. The mode fCB at the Γ point
(Fig. 1b, left inset) resembles a standing wave along the y
direction, and it therefore does not depend strongly on tension in
the x direction. The mode corresponding to fVB, between Γ and X
(Fig. 1b, right inset), resembles a linear combination of standing
waves in the x and y directions. The frequency of this mode
however does depend on σxx. For a higher uniaxiality of 1.7 as
shown in Fig. 1d, the tension distribution becomes even more
distorted (Fig. 1d inset) and the lower branches (fVB) overtake the
upper ones (fCB). At this point, the bandgap closes ( fCB�fVB

ðfCBþfVBÞ=2 ¼ 0).
In Supplementary Note 1, we provide extended band structure
calculations showing the full extent of the Brillouin zone under
uniaxial tension.
To summarise the results of bandgap tuning, in Fig. 1e we

compare fVB and fCB vs. the total tension σtotal for uniaxial (blue)
and uniform biaxial (red) tension. For uniaxial tension, we see a
closing of the bandgap at σtotal/σ0= 1.6 (corresponds to
σxx/σyy= 1.7). In contrast, for biaxial tension scaling, the bandgap

Fig. 1 Phononic bandgap closing induced by uniaxial tension. a Unit cell of the honeycomb lattice with redistributed tension (top) and the
corresponding first Brillouin zone (bottom). b Phononic band structure for the unit cell shown in a under uniform tension
(σxx= σyy= 0.01 Nm−1). For out-of-plane modes (solid lines) a clear phononic bandgap is visible (blue shaded region). The insets show
the mode shape (displacement) within the unit cell at the points above and below the bandgap. c, d Phononic band structure and tension
distribution in the unit cell (insets) for σxx/σyy of 1.35 and 1.7. With increasing uniaxiality in tension (σxx/σyy > 1), the phononic bands show
different frequency scaling behaviour along different high symmetry lines. At σxx/σyy= 1.7, the phononic bandgap closes. e Phononic
bandgap for biaxial (red) and uniaxial (blue) tension vs. total normalised tension. When the tension is increased biaxially (σxx= σyy), the
bandgap centre frequency rises, and the bandgap width increases. On the contrary, uniaxial upscaling (σxx > σyy) leads to a bandgap closing.
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increases in absolute size with increased tension, while the relative
bandgap size remains constant. Overall, by varying the tension
uniaxiality, we find different scaling behaviour for different
phononic bands along different directions, which allows us to
dynamically tune the size of the bandgap.
Our next goal is to develop a design for an experimentally

feasible device realising the phononic bandgap closing. To
accomplish this, three challenges need to be overcome. First,
how can we probe the phononic bandgap in a realistic finite-size
device? This is critical as the band structure calculations
considered so far always assume an infinite phononic lattice.
Second, how can we generate the highly uniaxial tension
distribution needed to close the bandgap? Third, is it feasible to
fabricate a sufficiently uniform PnC from experimentally available
2D materials? We now individually address each of these
questions in the next sections.

Bandgap probing in a finite-size device
We probe our finite-size phononic system via acoustic transmis-
sions measurements. In general, the transmission across a
phononic system is determined by the density of available states
at the relevant frequency which serves as a proxy for the phononic
band structure. We design a transistor-style PnC with realistic
dimensions of 9 µm × 28 µm (7 × 17 unit cells, unlike the infinite
system considered in simplified simulations so far), in which
instead of electrons we will determine the transmission of
mechanical motion (Fig. 2a). At point A (excitation/source)
mechanical motion is excited, which then can propagate through
the PnC until it reaches point B (detection/drain). Drive and
detection in such a device design can be experimentally realised
by using either surface acoustic waves (SAW)15, local gate
electrodes35 or two spatially separated laser beams12 (blue, red
Fig. 2a). Here, we concentrate without loss of generality on the last
case. We define the transmission from area A to B as:

TransmissionA)B fð Þ ¼ 1
T

Z T

0

RR
Az x; y; f ; tð ÞdARR
Bz x; y; f ; tð ÞdA dt (1)

where z(x, y, f, t) is the out of plane displacement of the suspended
graphene with a period T ðf ¼ 1

TÞ. The integration is over the
illumination areas in points A and B. We concentrate on out-of-
plane modes as they are controlled by the in-plane phononic
pattern, show strong capacitive coupling to perpendicular electric
fields from a gate electrode and are sensitive to interferometric
readout. In Fig. 2b, we plot the transmission vs. frequency for the
device shown in Fig. 2a. In the region below the fundamental
resonance, the stop band (<5 MHz), we find strongly supressed
transmission. Towards higher frequencies, we find multiple closely

spaced sharp peaks, which correspond to higher order resonances
of the device. As the frequency increases further, the transmission
is more and more dominated by the phononic band structure, and
we observe broad “bands” rather than individual resonance
modes. The transmission suddenly drops by an average of 5
orders magnitude in the expected bandgap region between 48.5
and 56.5 MHz (blue shaded). The non-zero transmission inside the
bandgap is related to finite-size effects captured by our model.
Above the bandgap the transmission recovers and remains close
to 1. The frequency range of the bandgap extracted from
transmission simulations matches well with the bandgap from
band structure calculations (comp. Fig. 1b). To summarise, we can
use acoustic transmission studies to probe the phononic bandgap
in finite-size devices. Furthermore, transmission of mechanical
motion across the device in the bandgap region is strongly
suppressed and, in analogy to an electronic system, the system
can be considered a mechanically insulating.

Uniaxial tension engineering
After finding the phononic bandgap closing in band structure
calculations at a tension uniaxiality of σxx/σyy= 1.7 and establish-
ing transmission studies as a suitable approach to probe the
bandgap, we now aim to produce the required tension distribu-
tion—and hence the bandgap closing—in a realistic device of
finite size. Our key idea is to apply electrostatic pressure to a
suspended rectangular device (Fig. 3a) with non-unity aspect ratio
(W/L). In this case the induced tension is larger along the direction
of the smaller spatial dimension (x in Fig. 3a)36. We model the
membrane as clamped at its perimeter. Electrostatic pressure pel is
generated by applying a gate voltage (Vgate) between the highly
conductive graphene and a gate electrode separated from it by
distance d:

pel ¼ ϵ0
2

Vgate

d

� �2

(2)

where ϵ0 is the vacuum permittivity. We assume d= 300 nm, a
typical oxide thickness for Si/SiO2 substrates used for 2D materials.
At zero gate voltage, corresponding to zero pressure, the
membrane is uniformly tensed (σxx ≈ σyy). The tension distribution
inside the centre of the phononic device is plotted in Fig. 3b. With
applied pressure the degree of tension uniaxiality σxx/σyy increases
and the distribution of tension becomes rotationally asymmetric
(Fig. 3c). For pel= 3 kPa (8 V), σxx/σyy reaches 1.7 and we thus
expect the bandgap closing to occur. The generated tension
distribution also matches the prediction for the bandgap closing
from our band structure calculations—compare dashed outline in
Fig. 3c with the inset of Fig. 1d. In Fig. 3d we summarise the results

Fig. 2 Probing the band structure via transmission studies in a finite-size phononic crystal. a Transmission geometry for a rectangular
phononic device. At point A mechanical motion is excited by a frequency modulated laser (blue). The vibrational wave travels through the
device and is detected at point B by a second laser spot (red). b Transmission from A to B vs. excitation frequency for the device shown in a. A
clear bandgap region is visible (blue shaded) where transmission of mechanical motion through the device is suppressed by ~105.
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of tension engineering for our finite-size system in a phase
diagram, where we plot σxx/σyy vs. applied pressure vs. aspect
ratio. When σxx/σyy reaches the critical value of 1.7 (dashed line),
we expect bandgap closing according to our band structure
calculations for the infinite lattice. This line can therefore be
viewed as a boundary separating a mechanically insulating from a
mechanically conductive (transmissive) state. We see that the
conductive state is reached at lowest applied pressure for an
aspect ratio of W/L= 0.32.
Next, we calculate the transmission spectra for applied

pressures of 0 and 5 kPa (Fig. 3e). While we find a clear bandgap
(and higher order harmonics) for the un-pressured state (blue), the
bandgap completely vanishes with applied pressure (red, 5 kPa),
confirming the expected bandgap closing for a finite-size
phononic crystal. The system is now transmissive and mechani-
cally conductive. Continuing the analogy between phononic and
electronic devices, our system can be viewed as a mechanical
transistor for MHz phonons with an on/off ratio of ~105 (100 dB
suppression). This corresponds to 6 dB suppression per unit cell.
In Fig. 3f, we show combined results from multiple pressures by

plotting fVB and fCB for the rectangular device (W/L= 0.32, blue)
and a circular reference device (red). In accordance with previous
simplified calculations (Fig. 1e), we see that the bandgap fCB�fVB

ðfCBþfVBÞ=2
gradually decreases in size with applied pressure for the
rectangular device. The applied pressure increases σxx/σyy and

drives the system towards the bandgap closing. In contrast, the
circular reference device for which we expect entirely biaxial
tension tuning (σxx ≈ σyy) exhibits a clear bandgap up to 30 kPa
(see Supplementary Note 3). To better relate our results to the
phononic band structure calculations, we take the average tension
values (σxx, σyy and σtotal) from the finite-size system under
pressure as input for our infinite model and plot the expected
bandgap regions in Fig. 3f (red and blue shaded). While we find
comparable behaviour, the bandgap closing however occurs at
somewhat higher pressures. This is likely due to boundary-related
disorder that is excluded in the infinite model. We extract the
average strain from our simulations and obtain ε= 0.24% for an
applied pressure of 10 kPa. This is well below the onset of phonon
instabilities37 or graphene’s breaking strain28. To summarise, we
find bandgap closing for a highly uniaxial tension distribution
generated by applying electrostatic pressure in a realistic finite-
size device with optimised geometry. This allows us to change the
state of a PnC from mechanically insulating to conductive by
simply applying a gate voltage.

Fabrication related challenges
Having demonstrated large frequency tunability as well as
phononic bandgap closing in graphene PnCs, we now want to
assess the fabrication challenges associated with 2D materials. We
therefore investigate the effect on the phononic bandgap for the

Fig. 3 Uniaxial tension engineering in a finite-size phononic system. a Sketch of a finite-size system phononic device, which is mechanically
deformed under electrostatic pressure, pel, generated by a gate electrode below the graphene. b, c Spatial tension distribution in the centre of
the device with and without applied pressure. The dashed lines indicate the unit cell of the lattice. d Mechanical phase diagram: Tension
uniaxiality (σxx/σyy) vs. pressure vs. device aspect ratio (W/L). The dotted line corresponds to σxx/σyy= 1.7, the degree in uniaxiality needed to
close the bandgap. e Transmission for a device with an aspect ratio of 0.32 for pel= 0 kPa (blue) and 5 kPa (red). The initially pronounced
bandgap vanishes with applied pressure. f Extracted valence band maximum (fVB) and conduction band minimum (fCB) vs. applied pressure
for a rectangular device (blue, shown in a) and a circular device (red) as reference for uniform scaling (σxx/σyy ≈ 1). For the rectangular device
the bandgap closing occurs at 3 kPa, whereas the circular device maintains a bandgap over the entire range of applied pressures. The error
bars depict the reading error of the simulation results, and the shaded areas correspond to the phononic bandgap extracted from band
structure calculations.
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two most common forms of disorder in 2D materials: surface
contamination and random tension variations.
Perhaps the most widespread sources of contamination are

“islands” of residues on top of the graphene. To simulate these
added pieces of mass, we choose Polydimethylsiloxane (PDMS) as
a typical polymer often used for transfer of 2D materials, and
randomly place the pieces on the graphene membrane (Fig. 4a).
At a thickness of 18 nm and a diameter of 4 µm, each piece has
the same weight as the entire clean resonator. Next, we focus on
the bandgap region and plot transmission vs. frequency for
various amounts of added mass (Fig. 4b). Even for three added
pieces (red), we still observe weak signatures of the phononic
bandgap and conclude that the combined mass density of
graphene and contamination must be on the order of
ρ2D � 4ρgraphene. Values below this threshold have been observed
in some graphene resonators in literature32,38. We also test the
effect of a uniform film of PDMS on the phononic device and still
find a clear bandgap (see Supplementary Note 4).
The second potential threat for breaking the phononic order are

random tension variations in the suspended membrane com-
monly observed in both patterned and unpatterned graphene
membranes31. To model this effect, we generate disorder based
on a superposition of randomised plane waves (details in
Supplementary Note 5). We take into account variations down
to ¼ of the lattice constant of the phononic pattern. Two
generated spatial tension distributions for small and large disorder
are shown in Fig. 4c. The disorder strength is parametrised by the
standard deviation of the distribution,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 (see insets).
We now calculate the transmission through the phononic device
as a function of disorder strength. As shown in Fig. 4d, we find a

gradual smearing out of the bandgap with increasing disorder.
Above an estimated critical value of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 � 0:40; the
bandgap is no longer clearly distinguishable. If we compare this
threshold to experimental values derived from Raman spectro-
scopy39–41, we find similar spreads in tension. We also investigate
the effect of variations in hole size on the phononic bandgap and
find it to be robust for the level of disorder seen in realistic devices
(see Supplementary Note 6). We conclude that it is challenging
but possible to fabricate sufficiently uniform suspended devices. If,
however more uniform samples are needed, we propose using
thin multilayers of graphene, for which we find a bandgap up to a
thickness of ~200 layers (see Supplementary Note 7). For
multilayer devices, we need larger pressures to induce the
bandgap closing, but commonly used SiO2/Si (300 nm) substrates
allow applying ~100 V gate voltage before dielectric breakdown
occurs, which translates to ~50 kPa (sufficient to induce the
bandgap closing on multilayer devices). Overall, fabricating a PnC
from suspended graphene with a pronounced bandgap is feasible.

DISCUSSION
We have demonstrated the manipulation of the phononic band
structure by using uniaxial tension engineering and found closing
of a phononic bandgap at σxx/σyy= 1.7. This transition from a
mechanically insulating to a conductive state may be regarded as
the mechanical analogue of a metal-insulator-transition. In a finite-
size device, we can generate the required uniaxial tension
distribution by applying a voltage of ~8 V to a gate electrode
and observe vanishing of the phononic bandgap in transmission
studies. This device can be considered a phononic counterpart to

Fig. 4 The effect of disorder on the phononic bandgap. a A phononic device with and without surface contamination. b Phononic bandgap vs.
added mass. With increasing degree of contamination, the bandgap smears out, yet remains visible up to areal mass density of ρ2D � 4ρgraphene.
c Graphene membrane before patterning with small and large tension disorder. The insets show the histograms used to extract the disorder
strength: left,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 ¼ 0:14 and right,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 ¼ 0:44. d Phononic bandgap vs. tension disorder. At a critical relative variation in tensionffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 � 0:40 the bandgap vanishes.
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a field effect transistor, with acoustic transmission measurements
at the bandgap frequency taking the role of electrical transport.
Furthermore, we discuss the feasibility of fabricating such a device
with commonly used methods and extract a critical value for
surface contamination (ρ2D � 4ρgraphene) and tension variations
(

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σð Þp

=σ0 � 0:40).
The proposed system acts as a phononic transistor that can be

used for phonon logic in the MHz range and invites realisation of a
variety of logic gates as a next step. By varying the lattice constant
a, the phononic system can be engineered to function in a broad
range of frequencies from ~10 MHz to ~1 GHz. In addition, the
proposed device design can serve as a switch controlling the
coupling between two remote systems, e.g. mechanical resonators
acting as qubits19–21. This in principle also allows tunable
dispersive readout of qubits via mechanical resonators.
The proposed bandgap closing also makes it possible to control
the phononic shielding of ultracoherent defect modes from the
environment and therefore allows to dynamically study dissipa-
tion mechanisms as shown in Supplementary Note 8. Finally,
following the analogy between phononic and electronic crystals
invites the consideration of analogues to other, more complex
condensed matter physics phenomena, e.g. the quantum hall
effect, Mott insulator transition, and topological phase transitions.

METHODS
FEM simulations
For the finite element modelling, we use COMSOL Multiphysics
(Version 5.5) and assume the following material parameters for
monolayer graphene: Young’s modulus E2D= 1.0 TPa28, Poisson’s
ratio of ν= 0.15, thickness of h= 0.335 nm and a density of
ρ ¼ ρ2D

h ¼ 2260kg m�3. For details, see Supplementary Notes 1–8.
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