Hintergrund der hier zusammengefassten Studien war die aktuelle Datenlage, die dafür spricht, dass es sich bei der klinisch unkomplizierten, histopathologisch phlegmonösen und der klinisch komplizierten, histopathologisch gangränösen Appendizitis um unabhängige Entitäten handelt. Diese können unterschiedlichen Therapieoptionen (konservativ vs. operativ) zugeführt werden. Vor diesem Hintergrund war es ein Ziel der Arbeiten zu untersuchen, wie die Formen der akuten Appendizitis im Kindes- und Jugendalter bereits prätherapeutisch unterschieden werden können.
Sowohl in der Labordiagnostik (P1 und P2) als auch im Ultraschall (P3) lassen sich Unterschiede zwischen Patient*innen mit unkomplizierter, phlegmonöser und komplizierter (gangränöser und perforierender) Appendizitis aufzeigen. Hierdurch allein kann allerdings aufgrund unzureichender Trennschärfe noch keine ausreichende Entscheidungssicherheit erreicht werden. Mit Verfahren der künstlichen Intelligenz auf Untersucher-unabhängige diagnostische Parameter (P4) konnte die Vorhersagegenauigkeit der akuten Appendizitis weiter gesteigert werden. Interessante Ergebnisse bezüglich der unterschiedlichen Pathomechanismen der beiden inflammatorischen Entitäten ergaben sich durch eine differenzielle Genexpressionsanalyse (P5). In einer Proof-of-Concept-Studie wurden zuvor beschriebene Methoden der künstlichen Intelligenz auf die Genexpressionsdaten angewandt (P6). Hierdurch konnte im Modell eine grundsätzliche Differenzierbarkeit der Entitäten durch die Anwendung der neuen Methode aufgezeigt werden.
Ein mittelfristiges Ziel ist es, eine Biomarkersignatur zu definieren, die ihre Aussagekraft durch einen Computeralgorithmus hat. Hierdurch soll eine schnelle Therapieentscheidung ermöglicht werden. Im Idealfall sollte diese Biomarkersignatur sicher, objektiv und einfach zu bestimmen sein sowie eine höhere diagnostische Sicherheit als die bisherige Diagnostik mittels Anamnese, Untersuchung, Laboranalyse und Ultraschall bieten.
Langfristiges Ziel von Folgestudien ist die Identifizierung einer Biomarkersignatur mit der bestmöglichen Vorhersagekraft. Hinsichtlich der routinemäßigen klinischen Diagnostik ist die Anwendung von Point-of-Care Devices auf PCR-Basis denkbar. Hier könnte eine limitierte Anzahl von Primern für eine Biomarkersignatur mit hoher Vorhersagekraft zum Einsatz kommen. Der dadurch ermittelte Biomarker würde seine Aussagekraft durch einen einfach anzuwendenden Computeralgorithmus erhalten. Die Kombination aus Genexpressionsanalyse mit Methoden der künstlichen Intelligenz kann somit die Grundlage für ein neues diagnostisches Instrument zur sicheren Unterscheidung unterschiedlicher Appendizitisentitäten darstellen.